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Abstract

Recently, there has been a growing interest in modelling planning with informa-
tion constraints. Accordingly, a decision maker maximizes a regularized expected
utility known as the free energy, where the regularizer is given by the information
divergence from a prior to a posterior choice probability distribution. While this
approach can be justified in various ways, most importantly from statistical me-
chanics and information theory, it is still unclear how it relates to game theory.
This connection has been suggested previously in work relating the free energy to
risk-sensitive control and to extensive form games. In this work, we present an ad-
versarial interpretation that is equivalent to the free energy optimization problem.
The adversary can, by paying an exponential penalty, generate costs that diminish
the decision maker’s payoffs. It turns out that the optimal strategy of the adversary
consists in choosing costs so as to render the decision maker indifferent among its
choices, which is a definining property of a Nash equilibrium, thus tightening the
connection between free energy optimization and game theory.

1 Introduction

There has been a growing interest in modelling planning and decision making with information
constraints. In this paradigm, a bounded-rational decision maker is thought of as extremizing the
functional

Fβ [p] :=
∑

x∈X

p(x)U(x) −
1

β

∑

x∈X

p(x) log
p(x)

p0(x)
, (1)

where p0, p ∈ ∆(X ) are a prior and posterior distribution respectively in the simplex ∆(X) over
strategies X , U is a utility function, and where β ∈ R is a parameter that controls the trade-off
between maximizing the expected utility and minimizing the information divergence from the prior
to the posterior. The functional (1) is known under various names, the most commonly adopted
ones being KL-control cost and free energy. The particular regularization embodied by (1) has been
justified in many ways. The first ones [2, 5] took their inspiration from the maximum entropy prin-
ciple of statistical mechanics as a way to model systems with noisy control mechanisms. In [12],
the information divergence was used as a way to formulate a convex control problem having linear
solutions. [6, 7] proposed equation (1) as a way to formalize bounded rationality by deriving it from
an axiomatic formalization of transformation costs that render utilities and information commen-
surable. [10] use (1) as a way to control the loss of information resulting from policy updates to
avoid overfitting. [11] gave an information-theoretic justification of (1) that parallels rate-distortion
theory. In their interpretation, the optimization problem minp −βFβ [p] represents the minimal ex-
pected amount of bits necessary to specify a choice that yields a given expected utility. The utility
plays the role of a linear constraint, thereby pointing out the information-geometric nature of (1).
Other related justifications arise in the context of computational neuroscience [3, 4] and Quantal
Response Equilibrium [14, 15].
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Previous results have also suggested that (1) has a relation to game theory. This is seen follows: the
extremum of (1) given by

1

β
logZβ , where Zβ :=

∑

x

p0(x)e
βU(x), (2)

but now seen as a function of β, can be thought of as an interpolation of the maximum, expectation
and minimum operator, since

1
β
logZβ = max

x
{U(x)} β → +∞

1
β
logZβ = Eq[U ] β → 0

1
β
logZβ = min

x
{U(x)} β → −∞.

This has two important consequences. First, (2) corresponds, in economic jargon, to the certainty-
equivalent, i.e. the value a risk-sensitive decision-maker is thought to assign to an uncertain choice
([6], also see [13]). Second, in [8], it has been pointed out that the certainty-equivalent general-
izes the aggregation operators of decision trees, also known as extensive form games in the game-
theoretic literature. This is important, as decision making in the face of an adversarial, an indifferent,
and a cooperative environment, which have previously been treated as unrelated modeling assump-
tions, can now be treated as particular instances of a single decision rule; the different decision
attitudes just correspond to different choices of the parameter β. Despite the identification with the
certainty-equivalent, it is as yet unknown how to derive (1) directly from a game-theoretic scenario,
which would elucidate the conditions under which (2) is exact.

2 Results

The main result of our present work is very simple: the maximization of equation (1) is equivalent
to

min
C

max
p

∑

x

p(x)[U(x) − C(x)] +
∑

x

p0(x)e
βC(x). (3)

This equation can be interpreted as follows. The decision maker is playing against an adversarial
environment. After the decision maker chooses its probabilities p(x), the adversarial enviroment can
generate costs C(x) reacting to the choice. However, the adversary is not allowed to generate these
costs arbitrarily; instead, it pays an exponential penalty to generate them.

Our second result characterizes the solution to this adversarial setup. It turns out that the adversary’s
best strategy is to choose costs such that

U(x)− C(x) = constant, (4)

that is, costs are chosen such that the decision-maker’s eventual payoffs are uniform over the options.

3 Derivation

3.1 First Claim

Define

f [p, C] :=
∑

x

p(x)[U(x) − C(x)] +
∑

x

p0(x)e
βC(x).

Since f is continuous, concave in the p(x) and convex in the C(x), then

min
C

max
p

f [p, C] = max
p

min
C

f [p, C].

Then, minimizing over the costs yields the worst case

∂f

∂C(x)
= 0 =⇒ p(x) = βp0(x)e

βC∗(x).
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This implies that the costs C∗ must be chosen as

C∗(x) =
1

β
log

p(x)

p0(x)
+

1

β
log

1

β
.

Substituting the worst case costs back into f yields

f [p, C∗] =
∑

x

p(x)U(x) −
1

β

∑

x

p(x)
{

log
p(x)

βp0(x)

}

+
∑

x

p0(x)
{ p(x)

βp0(x)

}

=
∑

x

p(x)U(x) −
1

β

∑

x

p(x) log
p(x)

p0(x)
+K

with constant K = − 1
β
(log β + 1). Obviously, the constant can be dropped without changing the

maximizing distribution. That is,

argmax
p

f [p, C]−K = argmax
p

Fβ [p].

This proves that (1) is equivalent to (3). Mathematically, the adversarial term is generated from the
entropy term via a generalized Legendre transformation. The convex conjugate of the logarithmic
term is related to the exponential penalty for the adversary.

3.2 Second Claim

Define X ∗ ⊂ X as the subset of elements maximizing the penalized utility, that is for all x∗ ∈ X
and x ∈ X ,

U(x∗)− C(x∗) ≥ U(x)− C(x). (5)

If we now maximize f with respect to the choice probabilities, then the optimal probabilities p∗(x)
are given by

∂f

∂p(x)
= 0 =⇒ p∗(x) =

{

q(x) if x ∈ X ∗,

0 otherwise,

where q is any distribution over X ∗. In other words, the optimal choice probabilities. Given this, the
worst case costs C∗(x) are

∂f [C, p∗]

∂C(x)
= 0 =⇒ C∗(x) =

{

1
β
log q(x)

βp0(x)
if x ∈ X ∗,

−∞ otherwise.
(6)

However, if X ∗ 6= X , then we get a contradiction, since

U(x∗)− C∗(x∗) 6≥ U(x)− C∗(x)

for all x /∈ X ∗, violating (5). Hence, it must be that for all x ∈ X ,

U(x)− C(x) = constant,

concluding the proof of our second claim.

4 Discussion

Indifference and Nash Equilibrium. Our results establish an interesting relation to game theory.
Equations (4) and (6), immediately yield the indifference relations

U(x)− C(x) = constant and U(x)−
1

β
log

p(x)

p0(x)
= constant

for all x ∈ X , where we have used (6) and the fact that it must be that p∗(x) = q(x) to avoid the
contradiction pointed out in the previous section. This is a characterization of the solution to the free
energy functional, i.e. the equilibrium distribution

p∗(x) =
p0(x)e

βU(x)

∑

x′ p0(x′)eβU(x′)
.

This is interesting because it is well-known in game theory that a Nash equilibrium is a strategy
profile such that each player chooses a (mixed) strategy that renders the others players indifferent to
their choices [9]. In our current setup, the adversary chooses costs such that the decision-maker is
indifferent between his choices and vice-versa.
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Equivalence to General Regularizers. One could argue that the exponential regularizer
∑

x

p0(x)e
βC(x) (7)

is arbitrary and unmotivated. In particular, consider a more general regularizer of the form
∑

x

gx
(

C(x)
)

, (8)

where each option x ∈ X has its own penalization function gx : R → R
+ for the cost C(x). For the

functions gx(z) to intuitively correspond to penalizations, let us assume that they are continuously
differentiable, strictly convex and monotonically increasing. Then, the worst-case costs C∗(x) the
adversary can choose are given by

∂f

∂C(x)
= 0 =⇒ C∗(x) =

{

γ(x) if x ∈ X ∗,

−∞ otherwise.
(9)

where γ(x) is the solution to dgx/dz = q(x). It is immediately seen that this enforces the indiffer-
ence relation (4). Now, eliminating the contradictions by enforcing X ∗ = X , equations (6) and (9)
say that

p(x) = βp0(x)e
βC∗(x) and p(x) =

dgx
dz

(

C∗(x)
)

.

Hence, equating the latter two and assuming that they have the same optimal costs C∗(x) yields

p0(x) =
1

β
e−βC∗(x) dgx

dz

(

C∗(x)
)

; (10)

which is to say that the general regularizer (8) is equivalent to the exponential regularizer (7) where
the prior weights p0(x) have been chosen as in (10).

5 Conclusions

In this report, we have presented an adversarial interpretation of the free energy functional, which
is readily obtained via a generalized Legendre transformation. In this representation, an adversarial
player can choose costs that reduce the decision maker’s payoffs, where the adversary is subject to
an exponential penalty for its choice of costs. We have shown that the worst-case adversary will
select costs that render the decision maker’s payoff uniform, in accordance to the Nash equilibrium.

This adversarial interpretation readily suggests novel algorithms for the calculation of the equilib-
rium distribution, such as the ones inspired by differential game theory [1] and convex program-
ming [16].
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[10] J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In AAAI, 2010.

[11] N. Tishby and D. Polani. Perception-Action Cycle, chapter Information Theory of Decisions and Actions,
pages 601–636. Springer New York, 2011.

[12] E. Todorov. Linearly solvable markov decision problems. In Advances in Neural Information Processing
Systems, volume 19, pages 1369–1376, 2006.

[13] B. van den Broek, W. Wiegerinck, and H.J. Kappen. Risk sensitive path integral control. In UAI, pages
615–622, 2010.

[14] D.H. Wolpert. Complex Engineering Systems, chapter Information theory - the bridge connecting bounded
rational game theory and statistical physics. Perseus Books, 2004.
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