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Abstract. We present an actor-critic scheme for reinforcement learning
in complex domains. The main contribution is to show that planning
and I/O dynamics can be separated such that an intractable planning
problem reduces to a simple multi-armed bandit problem, where each
lever stands for a potentially arbitrarily complex policy. Furthermore, we
use the Bayesian control rule to construct an adaptive bandit player that
is universal with respect to a given class of optimal bandit players, thus
indirectly constructing an adaptive agent that is universal with respect
to a given class of policies.
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1 Introduction

Actor-critic (AC) methods [1] are reinforcement learning (RL) algorithms
[9] whose implementation can be conceptually subdivided into two mod-
ules: the actor, responsible for interacting with the environment; and the
critic, responsible for evaluating the performance of the actor. In this
paper we present an AC method that conceptualizes learning a complex
policy as a multi-armed bandit problem [2, 6] where pulling one lever cor-
responds to executing one iteration of a policy. The critic, who plays the
role of the multi-armed bandit player, is implemented using the recently
introduced Bayesian control rule (BCR) [8, 7]. This has the advantage of
bypassing the computational costs of calculating the optimal policy by
translating adaptive control into a probabilistic inference problem. The
actor is implemented as a pool of parameterized policies. The scheme
that we put forward here significantly simplifies the design of RL agents
capable of learning complex I/O dynamics. Furthermore, we argue that
this scheme offers important advantages over current RL approaches as a
basis for general adaptive agents in real-world applications.

∗This research was supported by the European Commission FP7-ICT, “GUIDE—
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Fig. 1. The critic is an “agent” interacting with actor-environment system.

2 Setup

The interaction between the agent and the environment proceeds in cycles
t = 1, 2, . . . where at cycle t, the agent produces an action at ∈ A that is
gathered by the environment, which in turn responds with an observation
ot ∈ O and a reinforcement signal rt ∈ R that are collected by the agent.
To implement the actor-critic architecture, we introduce a signal θt ∈ Θ
generated by the critic at the beginning of each cycle, i.e. immediately
before at, ot and rt are produced.

2.1 Critic

The critic is modeled as a multi-armed bandit player with a possibly
(uncountably) infinite number of levers to choose from. More precisely,
the critic iteratively tries out levers θ1, θ2, θ3, . . . so as to maximize the
sum of the reinforcements r1, r2, r3, . . . In this sense, the θt and the rt are
the critic’s actions and observations respectively, not to be confused with
the actions at and observations ot of the actor.

According to the BCR, the critic has to sample the lever θt from the
distribution [8]

P (θt|θ̂1:t−1, r1:t−1) =

∫

Φ

P (θt|φ, θ1:t−1, r1:t−1)P (φ|θ̂1:t−1, r1:t−1) dφ, (1)

where the “hat”-notation θ̂1:t−1 denotes causal intervention rather than
probabilistic conditioning. The expression (1) corresponds to a weighted
mixture of policies P (θt|φ, θ1:t−1, r1:t−1) parameterized by φ ∈ Φ with
weights given by the posterior P (φ|θ̂1:t−1, r1:t−1). The posterior can in
turn be expressed as

P (φ|θ̂1:t−1, r1:t−1) =
P (φ)

∏t
τ=1 P (rτ |φ, θ1:τ , r1:τ−1)

∫

Φ
P (φ′)

∏t
τ=1 P (rτ |φ′, θ1:τ , r1:τ−1) dφ′

, (2)



where the P (rt|φ, θ1:t−1, r1:t−1) are the likelihoods of the reinforcements
under the hypothesis φ, and where P (φ) is the prior over Φ. Note that
there are no interventions on the right hand side of this equation.

Furthermore, we assume that each parameter φ ∈ Φ fully determines
the likelihood function P (rt|φ, θ1:t, r1:t−1) representing the probability of
observing the reinforcement rt given that (an arbitrary) lever θt was
pulled. The terms θ1:t−1, r1:t−1 can be used to model the internal state
of the bandit at cycle t. We assume that each bandit has a unique lever
θφ ∈ Θ that maximizes the expected sum of rewards, and that the optimal
strategy consists in pulling it in every time step:

P (θt|φ, θ1:t−1, r1:t−1) = P (θt|φ) =

{

1 if θt = θφ,

0 if θt 6= θφ.

Finally, we assume a prior P (φ) over the set of operation modes Φ. This
completes the specification of the critic. We will give a concrete example
in Sec. 3.

2.2 Actor

The aim of the actor is to offer an rich pool of I/O dynamics parameterized
by Θ that the critic can choose from. More precisely, from Fig. 1 it is seen
that the actor implements the stream over the actions, i.e.

P (at|θ1:t, a1:t−1, o1:t−1) = P (at|θt, a1:t−1, o1:t−1),

where we have assumed that this distribution is independent of the pre-
viously chosen parameters θ1:t−1. For implementation purposes it is con-
venient to summarize the experience a1:t, o1:t as a sufficient statistics sθt+1

representing an internal state of the I/O dynamics θ ∈ Φ at time t + 1.
States are then updated recursively as

sθt+1 = fθ(s
θ
t , at, ot),

where fθ maps the old state sθt and the interaction (at, ot) into the new
state sθt+1. This scheme facilitates running the different I/O dynamics in
parallel. The behavior of our proposed actor-critic scheme is described in
the pseudo-code listed in Alg. 1.

3 Experimental Results

We have applied the proposed scheme to a toy problem containing el-
ements that are usually regarded as challenging in the literature: non-
linear & high-dimensional dynamics and only partially observable state.
The I/O domains are A = O = [−1, 1]10 with reinforcements in R.



Algorithm 1: Actor-Critic BCR

1 foreach φ ∈ Φ do Set P1(φ)← P (φ)

2 foreach θ ∈ Θ do Initialize states sθ0

3 for t← 1, 2, 3, . . . do
4 Sample φt ∼ Pt(φ)

5 Set θt ← θφt

6 Sample at ∼ P (at|θt, s
θt
t )

7 Issue at and collect ot and rt
8 foreach φ ∈ Φ do Set Pt+1(φ) ∝ Pt(φ)P (rt|φ, θ1:t, r1:t−1)

9 foreach θ ∈ Θ do Set sθt+1 ← fθ(s
θ
t , at, ot)

The environment produces observations following the equation

[ot, qt]
T = f(µ · [at, ot−1, qt−1]

T ),

where at, ot, qt ∈ [−1, 1]10 are the 10-dimensional action, observation and
internal state vectors respectively, µ is a 20 × 30 parameter matrix, and
f(·) is a sigmoid mapping each component x into 2/(1 + e−x) − 1. Re-
wards are issued as rt = h(θ) + νt where h is an unknown reward mean
function and νt is Gaussian noise with variance σ2. Analogously, the actor
implements a family of 300 different policies, where each policy is of the
form

[at, st]
T = f(θ · [at−1, ot−1, st−1]

T ),

where st ∈ [−1, 1]10 is the internal state vector and θ ∈ Θ is the parameter
matrix of the policy. These 300 matrices were sampled randomly.

The critic is modeled as a bandit player with |Θ| = 300 levers to choose
from, where each lever is a parameter matrix θ ∈ Θ. We assume that
pulling lever θ produces a normally distributed reward r ∼ N(φθ, 1/λ),
where φθ ∈ R is the mean specific to lever θ and where λ > 0 is a known
precision term that is common to all levers and all bandits. Thus, a bandit
is fully specified by the vector φ = [φθ]θ∈Θ of all its means. To include all
possible bandits we use Φ = R

|Θ|. For each φ ∈ Φ, the likelihood model is

P (rt|φ, θ1:t, r1:t−1) = P (rt|φ, θt) = N(rt;φθt , 1/λ),

and the policy is P (θt|φ) = 1 if θt = argmaxθ{φθ} and zero otherwise.
Because the likelihood is normal we place a conjugate prior P (φθ) =
N(φθ;mθ, 1/pθ) over Φ, where mθ and pθ are the mean and precision hy-
perparameters. This allows an easy update of the posterior after obtaining
a reward [4]. To assess the performance of our algorithm, we have averaged
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Fig. 2. Time-averaged reward of the adaptive system versus optimum performance.

a total of 100 runs with 5000 time steps. Fig. 2 shows the performance
curve. It can be seen that the interaction moves from an exploratory to
an exploitative phase, converging towards the optimal performance.

4 Discussion and Conclusion

The main contribution of this paper is to show how to separate the plan-
ning problem from the underlying I/O dynamics into the critic and the
actor respectively, reducing reducing a complex planning problem to a
simple multi-armed bandit problem. The critic is a bandit player based
on the Bayesian control rule. The actor is treated as a black box, possibly
implementing arbitrary complex policies.

There are important differences between our approach and other actor-
critic methods. First, current actor-critic algorithms critically depend on
the state-space view of the environment—see for instance [3, 9, 5]. In our
opinion, this view leads to an entanglement of planning and dynamics
that renders the RL problem far more difficult than necessary. Rather,
we argue that this separation allows tackling domains that are intractable
otherwise. Second, current reinforcement learning algorithms rely on con-
structing a point-estimate of the optimal policy, which is intractable when
done accurately, and very costly even when only approximated. In con-
trast, we use the Bayesian control rule to maintain a distribution over
optimal policies that is refined on-line as more observations become avail-
able. Additional experimental work is required to investigate the scala-
bility of our actor-critic scheme to larger and more realistic domains.
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