
1

Error Backpropagation with Generalized Functional
Composition

Alejandro Bassi and Pedro Ortega{abassi|peortega}@dcc.uchile.cl
Departamento de Ciencias de la Computación
Facultad de Ciencias Fı́sicas y Mateḿaticas

Universidad de Chile

Abstract— We present a flexible implementation scheme to
build learning machines that are trained with backpropagation.
The proposed approach departs from standard feedforward
artificial neural networks by using general vector functions
as the basic calculating units instead of simple neurons with
single outputs. Elaborate structures are created from these basic
building blocks by combining them with composition operators.
The operators can express intricate dataflow interactions in a
much straightforward way than what is achieved with networks
of connected neurons. Nested structures are built transparently.
Error and regularization terms may be inserted at arbitrary
points within a network. In all cases the gradient computation
is based on the same standard procedures, independently of the
learning algorithm. No special training methods are needed for
complex architectures. Our approach is easy to implement and
to extend with custom basic units and composition operators. As
one of its major practical advantages, it provides a framework
to rapidly create and test many network designs for a given
problem, easing the search of a suitable model.

Index Terms— Backpropagation, functional composition, neu-
ral network, modularity, compilation.

I. I NTRODUCTION

A RTIFICIAL neural networks (ANN) are computational
models whose processing units can be viewed as sim-

plified simulations of biological neurons. The calculation
of a unit generally involves a weighed sum of its inputs,
reshaped by a non-linear activation function with bounded
output. Following the early success of the perceptron [5],
the decisive breakthrough of artificial neural networks came
after the discovery of the backpropagation algorithm [8] which
allows to adjust the weights of multilayered networks using
gradient descent. The key improvement was to replace the
discontinuous step activation of the original artificial neuron
with a continuous logistic function [6], [7].

In spite of the historical importance of the neuronal
metaphor, most multilayered networks can be described in a
much more compact way relying on general vector functions
rather than the usual single output artificial neuron. For ex-
ample, let the vector functionsaffineN,M

w and logisticN be
defined as

affineN,M
w (x) = Ax + b

logisticN (x) =

[
1

1 + e−xi

]N

i=1

T

where x ∈ R
N , A is matrix of sizeM × N and b is a

vector ofM components. BothA andb are embedded in the

parameter vectorw ∈ R
M×N+M . A standard network with

an input of three components, a hidden layer of four neurons
and an output layer of two neurons with linear activations, can
be represented by the composite function

affine3,4
w1
◦ logistic4 ◦ affine4,2

w2

which is also a vector function that can be evaluated as

affine4,2
w2

(logistic4(affine3,4
w1

(x)))

The example above illustrates a simple case of function
composition. It can be argued that this kind of representation is
less flexible than a neuron based one. Particularly, it is notwell
suited to growing and pruning algorithms [25]–[27], where
the very structure of the network is dynamically adapted.
However, the great majority of practical ANN are structured
in homogeneous processing layers easily described with this
functional scheme.

We present a generalized functional approach to create
learning machines that can be used as an alternative to standard
feedforward ANN. Other complex neural architectures are also
considered, including nonfeedforward ones. We define a set of
vector functions and composition operators and explain how
these building blocks are used to define network structures
and how they are implemented in an efficient way. Composite
structures are designed to behave the same way than basic vec-
tor functions and may become part of higher level structures.
All building blocks are compatible with backpropagation.
Unlike the usual practice in which the training algorithm is
hardwired into the learning machine, our approach separates
the gradient computation. It permits to apply any first order
parameter optimization algorithm regardless of the network
architecture.

Similar modular approches to implement neural nets have
been proposed [9], [12]. Nevertheless, their framework re-
stricts function composition to cascade evaluation and do not
state how to generalize to other dataflow layouts.

A. Notation

Lower-case bold letters, for examplex, denote vectors,
while upper-case bold letters, such asM, denote matrices.
Elements are referred asxi and Mi,j . Calligraphic upper-
case letters denote finite indexed sets, as inX , which contain
|X | elements. The notation{xk}

|X |
k=1 is used to emphasize its

members, each one identified by a superscript. The termvector

2

refers to both column and row vectors, as it should be clear
from the context. For objects such as scalars, matrices and
indexed sets, a default encoding as a vector will be assumed,
for example[Mi,j]i,j with i = 1, . . . , n andj = 1, . . . ,m can
be rewritten as[Mk]k with k = 1, . . . ,m×n. If an object has
been encoded as a vectory and embedded into a vectorx,
thenx[y] denotes those elements. For a tupleU , the notation
U.I refers to its memberI. The dot notatioṅx stands for the
error gradient with respect tox, i.e. ∂E/∂x.

Along this text, the following symbols appear repeatedly

U Processing unit
C Composite unit
E Error or regularized unit
M Learning Machine
Q Execution sequence
X ,Y,D Input, output and target set
x,w,y,d input, parameter, output and target

vectors
ẋ, ẇ, ẏ input, parameter and output gradi-

ent vectors

II. GRADIENT BASED LEARNING

There are several approaches to automatic machine learning,
but much of the successful approaches can be categorized
as gradient-based learning methods[11]. The training task
consists in feeding a learning system with a training setT
and parametersw and to compute an associated error costE,
which measures the performance of the system (Figure 1a).
The aim of the training task is to adjust the parametersw

using a gradient descent technique, so thatE is minimized
given T (Figure 1b).

T

w

E

∂E
∂w

Fig. 1. Learning system

The learning system can be divided up into two components:
the learning machine and the cost function. This division
allows to restate the problem as follows. The training task
feeds a learning machineM with input vectorsX = {xi},
retrieves the output vectorsY = {M(xi,w)}, and computes
a cost E, making use of additional desired target vectors
D = {di} in the supervised case (Figure 2). The parameters
are then adjusted using the cost gradient. Figure 3 depicts
this idea. The end result of this setup is the trained learning
machineM .

A learning machine may be regarded as a processing
unit that implements a vector function and its gradient. A
machine may be simple (atomic) or complex, consisting of the
composition of several units possibly composite as well. The
key here is to recognize that recursive function composition
allows for arbitrarily complex (neural) structures and to exploit

x1, . . .

w

y1, . . .

d1, . . .

E
M(x, w)

ET (w)

Fig. 2. Error evaluation scheme

∂E

∂y1 , . . .

∂E
∂w

Fig. 3. Gradient evaluation scheme

this feature by designing appropriate processing units. To
ensure the seamless integration of the units, they must respect
additional design constraints as explained below.

A. Compositionality and forward evaluation

Function composition can be achieved by defining appropri-
ate functional operators. For example, consider theMultilayer
Perceptronarchitecture (MLP) where processing layers are
connected in cascade. This setup is viewed as a set of
processing units assembled by a serial composer defined as

serial(U1, U2, . . . , Un) ≡ Un(. . . U2(U1(x)) . . .)

where U1, U2, . . . , Un are units which compute the desired
vector functions. The MLP given in the previous example
would then be defined by

serial(affine3,4
w1

, logistic4, affine4,2
w2

). (1)

This expression describes a composite unit consisting of three
basic calculating units and a dataflow layout given by the serial
composition operator (Figure 4). The resulting composite unit
embodies itself a vector function, whose output depends on its
subunits’ outputs. This dependency can be explicited usinga
syntax tree (Figure 5).

x1

x2

x3

y1

y2

Fig. 4. MLP 3-4-2

3

serial

affine3,4
w1

logistic4 affine4,2
w2

Fig. 5. MLP Tree

The output of a basic unit results from a direct evaluation
of the associated vector function. In contrast, a compositeunit
could require the evaluation of several subunits accordingto its
dataflow layout. A functional composition is defined througha
dataflow layout that implies an evaluation order. The chained
ordered evaluation from the inputs to the outputs is called the
forward propagation. In our example, the forward propagation
consists of the following steps:

1. executeaffine3,4
w1

(x)→ v1

2. executelogistic4(v1)→ v2

3. executeaffine4,2
w2

(v2)→ y

where v1 and v2 are intermediate results. Here, the serial
composer fixes the execution order, allocates the buffers for
intermediate results and establishes the dataflow. Thisexecu-
tion sequence, depicted in figure 6, is basically the compiled
form of expression (1). It contains all the information needed
to compute the outputy of the serial unit given inputx.

affine3,4
w1

logistic4 affine4,2
w2

x v1 v2 y

Processing Units

Intermediate Results

Fig. 6. Execution sequence.

The example above can be easily extended to the general
case. Basic units contain all the information to carry out
the computation of a vector function given an input and
output buffer. Functional operators allow the construction of
composite units described by expressions which are compiled
to execution sequences.

B. Error backpropagation

In addition to the previous forward evaluation procedure,
the MLP needs an efficient procedure to compute the gradient
of the error with respect to its weights. This is achieved by
the error backpropagation algorithm [6]–[8], which is basically
a practical application of the chain rule [9]. To support this
algorithm, the execution sequence is extended with gradient
buffers and backward procedures. For each bufferv, a cor-
responding gradient buffeṙv of the same size is created. In
addition, each unit is equipped with two error backpropapation

routines: the gradient evaluation procedure and the backward
evaluation procedure.

x

w

y

forward procedure

ẋ

ẇ

ẏ

backpropagation procedure

gradient procedure

Fig. 7. (a) Forward and (b) backward evaluation

Consider a basic unit that produces outputy from input x
with parametersw. Identifying

ẋ =
∂E

∂x
, ẏ =

∂E

∂y
, ẇ =

∂E

∂w

and assuming thaṫy is already computed, then, applying the
chain rule for partial derivatives,̇w and ẋ are given by the
following equations

ẇi =
∑

k

∂yk

∂wi

ẏk (2)

ẋi =
∑

k

∂yk

∂xi

ẏk. (3)

So, givenẏ, a basic unit calculateṡw by executing its gradient
procedure (2), and it backpropagates the error gradient toẋ

with the backward propagation procedure (3), as depicted in
figure 7.

In the case of composite units, the error gradient is obtained
by following the forward execution sequence in reverse order.
Continuing with our previous MLP example, thebackward
propagationsequence is

1.a execute gradientaffine4,2(ẏ)→ ẇ2

1.b execute backpropaffine4,2(ẏ)→ v̇2

2.a execute gradientlogistic4(v̇2)→ null

2.b execute backproplogistic4(v̇2)→ v̇2

3.a execute gradientaffine3,4(v̇1)→ ẇ1

3.b execute backpropaffine3,4(v̇1)→ ẋ

It is worth noticing that the buffers involved in this proce-
dure are the gradient counterparts of the forward evaluation
(Figure 8). Subunits are always connected through shared
buffers. This invariant embedding assumption ensures the
seamless integration of units. With this extension and the
forward and backward propagation procedures, a composite

4

unit represented by a syntax tree is correctly compiled to
calculate its outputs and gradients.

affine3,4
w1

logistic4 affine4,2
w2

ẋ v̇1 v̇2 ẏ

x v1 v2 y

Processing Units

Intermediate Results

Fig. 8. Backward execution sequence.

III. B UILDING BLOCKS

In order to easily create a neural architecture we propose
three kinds of building blocks: basic units that implement
atomic vector functions, composite units that are built from
subunits, themselves possibly composite, and error or regular-
ized units which are the source of the gradient computation.
Composite units define different dataflow layouts depending
on the composition operator they embody.

A. Basic units

A basic unitU can be minimally described as a tuple

U = (Ufw ,Ugrad ,Ubk , I, O,w, ẇ)

where Ufw is the forward evaluation procedure,Ugrad the
gradient calculating procedure,Ubk the backpropagation pro-
cedure,I the size of the input vector,O the size of the
output vector,w the trainable parameters (weights) of the
unit andẇ the storage for the gradient of the weights. This
description is minimal in the sense that additional data may
be necessary for particular basic units, for example to store
non trainable parameters. The forward evaluation procedure
Ufw of a basic unit is associated to a vector functionF whose
derivatives{∂F/∂wi}

|w|
i=1 and{∂F/∂xi}

I
i=1 must be defined

to implementUgrad andUbk respectively. There is an implicit
order between these procedures. Before evaluatingUbk and
Ugrad the results ofUfw are needed.

The proceduresUfw , Ugrad andUbk are of the form

Ufw = fw(U,x,y)
Ugrad = grad(U,x,y, ẏ)
Ubk = bk(U,x,y, ẋ, ẏ)

where all arguments are references to external data provided
by the embedding execution context:U is a unit reference and
x, y, ẋ and ẏ are the input, output, input gradient and output
gradient buffers, respectively. The result ofUfw is obtained in
y and that ofUbk in ẋ. Ugrad modifiesẇ.

In order to create adequately initialized representationsof
specific units, each type of unit is associated to a creation
function, or constructor in object oriented terminology. A
constructor produces the representation of a unit of the corre-
sponding type as the result of its invocation with appropriate
defining arguments.

B. Composite units

A composite unitC is described as a tuple

C = (Ccompile , I, O,S)

where S is the list U1, U2, . . . UL of subunits of C and
Ccompile the compilation procedure that creates the dataflow
layout of the composite unit fromS. TheCfw , Cgrad andCbk

procedures are implicitely defined by this layout. Composite
units do not define trainable parametersw, but they subsume
the parameters of their subunits, concatenating them:C.w =
[U1.w, U2.w, . . . UL.w].

The list S represents the first level of a tree structure
whose final leaves are basic units. When a learning machine is
created, the tree is compiled to generate an execution sequence
of appropriately ordered and contextualized invocations to
basic units. All the calculating procedures of a composite
unit are then ultimately implemented using the procedures
associated to the leaves of the tree.

The procedureCcompile is of the form

Ccompile = compile(C,x,y, ẋ, ẏ)

Since composite units have subunits, the compiling process
is recursive. A defaultcompile procedure is needed for termi-
nal basic units:

compile(U,x,y, ẋ, ẏ) :
appendStep(U,x,y, ẋ, ẏ)

Following a standard compilation technique [28], each call
to appendStep produces a single execution step which is
appended to the execution sequence of the learning machine
that is being created.

C. Error or regularized units

An error or regularized unitE is described as a tuple

E = (Efw ,Egrad ,Ebk , I, O, U)

whereU is the subunit to which the error criterium is applied
(it usually encompasses the whole structure of a machine).
The vector function associated toE is the same than for
U . A regularized unit can therefore be used as a building
block exactly like its subunit. This equivalence is achieved
transparently by using inE the same buffersx, y, ẋ and ẏ

of U . To ensure it, a defaultcompile procedure is defined for
error units:

compile(E,x,y, ẋ, ẏ) :
compile(E.U,x,y, ẋ, ẏ)
appendStep(E,x,y, ẋ, ẏ)

whereE.U is a notation to indicate theU component ofE and
the call tocompile(E.U, . . .) refers to the compiling method
of U .

The procedures associated to a regularized unit have the
same interface than those of basic units. However, the forward
procedureEfw does not implement a vector function because
the procedureUfw of the underlying unit is assumed to carry
out this task. Instead, when the embedding machine is being
trained, it calculates the error function associated toE. Two
error types are considered in our design: errors over the outputs

5

y of U and errors over its parametersw. In the former case
Ebk adds the contribution of the error tȯy. In the latter case,
Egrad adds the contribution of the error tȯw.

The compiler generates the execution sequence ofU before
the execution step of its parent error unitE. When the forward
evaluation is carried out, the function associated toU is
calculated as expected before the error. During the backward
evaluation, the error contribution tȯy is available before the
backpropagation. Errors need to be calculated only when the
embedding machine is beeing trained.

D. MLP building blocks

A MLP can be constructed relying on two types of basic
vector processing units:affine transformations andlogistic
non-linear projections. Additionally, aserial connector is
needed to glue these basic units to form composite multilay-
ered structures. In order to evaluate its gradients, the MLP
must also be associated to an error function.

x1

x2

x3

y1

y2

y3

A

b

x1

x2

x3

x4

y1

y2

y3

y4

x yS1 S2 S3

Fig. 9. MLP building blocks.

Panel a) shows anaffine basic unit affine(3, 3), b) a logistic basic unit
logistic(4), and c) a serial connectorserial(S1, S2, S3).

1) Affine basic units :The constructor for affine transfor-
mations is invoked asaffine(N,M), whereN is the dimension
of the input of the unit to be created andM that of the output.
The attributes of the unit are initialized as follows:

U = affine(N,M) :
U ← new(Affine)
U.I ← N
U.O ←M
U.w← vector(M ×N + M)
U.ẇ← vector(M ×N + M)

where the parameter vectorw and its gradienṫw are assigned
with vectors of appropriate size. The methodsUfw , Ugrad

andUbk are the same for every unit of theAffine type. The
operationnew(Affine) is responsable of linking these methods
to the particular instance that is beeing created. Assuminga
standard mapping of the parameters into aO × I matrix A

and aO vectorb, the methods are defined as follows:

fw(U,x,y) :
y← Ax + b

grad(U,x,y, ẏ) :
ẇ[A]← ẇ[A] + ẏxT

ẇ[b]← ẇ[b] + ẏ

bk(U,x,y, ẋ, ẏ) :
ẋ← AT ẏ

where the notationv[M] refers to ‘the locations in vectorv
associated to the values of matrixM’.

In spite that some arguments of the methods are not used in
this particular case, they are kept for the sake of uniformity.
The guiding design principle is that, externally, all typesof
units have the same interface.

The gradient of basic units is calculated by adding the
contribution of the current training example tȯw. Providedẇ
is given an initial zero value, the gradient for a set of examples
is obtained by merely executing the calculations successively
with each one of them.

2) Logistic basic units :The constructor for logistic units
needs only one argument since its inputs and outputs have the
same dimension:

U = logistic(N) :
U ← new(Logistic)
U.I ← N
U.O ← N

The methods are defined as follows:

fw(U,x,y) :

y← [1/(1 + e−xi)]Oi=1
T

grad(U,x,y, ẏ) :
null method

bk(U,x,y, ẋ, ẏ) :

ẋ← [ẏiyi(yi − 1)]Ii=1
T

where the null gradient method is needed for interface com-
patibility.

3) Serial composite units :The constructor for serial
composite units is invoked with a list of subunits to be
connected. It generates a tree structure that must be compiled
before execution. The constructor is defined as:

C = serial(U1, U2, . . . , UL) :
C ← new(Serial)
C.I ← U1.I
C.O ← UL.O
C.S ← U1, U2, . . . , UL

where eachUk is a previously created unit. The compilation
method for serial units links the output of each subunit to the
input of its successor in the list. This is achieved by using
buffers to store intermediate results as shown below:

6

compile(C,x,y, ẋ, ẏ) :
v1 ← vector(U1.O) ; v̇1 ← vector(U1.O)
compile(U1,x,v1, ẋ, v̇1)
v2 ← vector(U1.O) ; v̇2 ← vector(U1.O)
compile(U2,v1,v2, v̇1, v̇2)
. . .
vL−1 ← vector(U1.O) ; v̇L−1 ← vector(U1.O)
compile(UL−1,vL−2,vL−1, v̇L−2, v̇L−1)
compile(UL,vL−1,y, v̇L−1, ẏ)

where eachUk belongs to theS list of C and the call to
compile(Uk, . . .) refers to the compiling method ofUk.

4) Mean square error units :The constructor for mean
square error units allows to associate this error to an un-
derlying unit which represents a whole ANN structure. The
constructor is defined as:

E = mse(U) :
E ← new(Mse)
E.I ← U.I
E.O ← U.O
E.S ← U

From the point of view of the vector function implemented, the
newly createdmse unit E behaves exacly like its underlying
unit U . However the methods ofE define how to calculate
the error and its contribution to the gradient:

fw(E,x,y) :

Error ← Error + 1
2N

∑O
i=1(di − yi)

2

grad(E,x,y, ẏ) :
null method

bk(E,x,y, ẋ, ẏ) :
ẏ← ẏ + (y − d)/N

whereError is a global accumulator for the error,N is the
total number of training examples|T | and d is the desired
value fory in T . The variablesError, N andd are global and
must be initialized by the training task. The error accumulator
allows to include several error or regularization terms within a
given network: they are all summed up. The gradient method
of the mse unit is null because this error does not directly
depend on the weightsw of U .

E. Machine construction

A backpropagation learning machineM is described as a
tuple

M = (U,Q,x,y, ẋ, ẏ)

whereQ is the sequence of compilation steps of the machine
and x, y, ẋ and ẏ are global buffers for the input, output,
input gradient and output gradient, respectively. A machine is
created from a given unitU which describes its structure. The
constructor is defined as:

M = machine(U) :
M ← new(Machine)
M.U ← U
M.x← vector(U.I)
M.y← vector(U.O)
M.ẋ← vector(U.I)
M.ẏ← vector(U.O)
M.Q ← void
compile(U,M.x,M.y,M.ẋ,M.ẏ)

The global buffers are initialized with vectors of appropriate
size and the compilation is recursively carried out to create in
Q the sequence of steps defined for the unitU . In our previous
MLP example, extended to include themse error,

mse(serial(affine(3, 4), logistic(4), affine(4, 2)))

the corresponding generated sequence is:

1. affine(3, 4),x,v1, ẋ, v̇1

2. logistic(4),v1,v2, v̇1, v̇2

3. affine(4, 2),v2,y, v̇2, ẏ
4. mse,x,y, ẋ, ẏ

The forward and backward propagation are carried out by
two default methodsMfw andMbk . They depend on the stored
compilation sequenceM.Q, where eachQk ∈ M.Q is of
the form (Uk,uk,vk, u̇k, v̇k). The methods are defined as
follows:

fw(M,x,y) :
M.x← x

for 1 6 k 6 |Q|
fw(Uk,uk,vk)

y←M.y

bk(M) :
for |Q| > k > 1

grad(Uk,uk,vk, v̇k)
bk(Uk,uk,vk, u̇k, v̇k)

The forward propagation copies the input vector to the input
buffer of the machine, then it executes the forward procedure
for each step of the sequence, in order, and copies the output
buffer of the machine to the output vector. The backward
propagation is carried out after the forward pass. It updates
the weight gradient and backpropagates the input gradient for
each step of the sequence, in reverse order.

IV. EXTENDED ARCHITECTURES

The units previously presented illustrate our implementation
scheme. Of course, other popular neural architectures can
be implemented from custom made units defined within this
framework. New units integrate seamlessly as long as they
conform to the same functional composition scheme. Complex
network architectures, tailored to specific pattern recognition
tasks, can be created from simple building blocks, opening a
wide range of applications within a single unified framework.

To further illustrate the flexibility of this approach, let
us consider a few neural architectures which are difficult to
implement in practice.

7

A. Higher-order neurons

The basic idea behind classifying with a multi-layer per-
ceptron is to use a number of perceptrons, where each one
implements a linear decision plane, and to combine them to
approximate the decision boundary of the different classes.
Although it has been shown that a MLP is an universal
approximator [29], [30], depending on the structure of the
data it may be advantageous to use neurons with non-linear
‘decision surfaces’ to separate classes. These so-calledhigher-
order neurons typically achieve complex decision boundaries
at the cost of increasing their computational complexity [31]–
[33].

Here we outline how to implement a simple variant of
higher-order neurons whose decision surfaces are quadratic
forms. Consider a layer of 3 input and 3 output neurons, where
the outputy is given by

y = logistic(z) (4)

and wherez is

z

a11 a12 . . . a1,10

a21 a22 . . . a2,10

a31 a32 . . . a3,10

1
x1

x2

x3

x2
1

x2
2

x2
3

x1x2

x1x3

x2x3

︸ ︷︷ ︸

x′

(5)

As shown in (5), vectorx′ contains constant, linear and
quadratic terms. This layer of higher-order neurons resembles
a standard neuron layer in that it performs an affine transform
followed by a logistic function. The difference lies in the
input vector, which has extra quadratic terms. These are
easily appended by copying the input vectorx, computing its
quadratic terms, and joining both linear and quadratic terms
into a single vectorx′.

branch

parallel

mixed affine

logistic

serialidentity
squared

x y

Fig. 10. 3-input 3-output quadratic neuron layer.

The resulting architecture is depicted in figure 10, where
five new units have been introduced. Thebranch basic unit

produces an enlarged output by concatenating several copies
of its input. The basic unitssquare and mixed compute the
squares and mixed products of its inputs, respectively. The
parallel composite unit combines several subunits in parallel,
thus applying different functions on each vector window. The
identity basic unit is self-explanatory.

Constructors for these units are as follows:branch(N,L)
producesL copies of itsN -sized input vector;squared(N)
calculatesN squared terms;mixed(N) producesN(N−1)/2
mixed products from itsN inputs; identity(N) builds an
identity function of N inputs; parallel(U1, . . . , UL) applies
units U1 to UL in parallel.

With this clarification, a layer of quadratic neurons withN
inputs andM outputs can be represented by the expression

serial(
branch(N, 3),
parallel(mixed(N), squared(N), identity(N)),
affine(N(N − 1)/2 + 2N,M),
logistic(M)).

This composite expression may be referred to as
quadratic(N,M) by noticing that it depends only onN
and M , thus allowing the rapid construction of higher-order
neuron layers.

B. Repetition

A simple kind of recursion is given by the iterative appli-
cation of the same function. More specifically, consider the
functional operatorrepeat defined by

repeat(f,N) = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

N times

wheref is a vector function with inputs and outputs of same
size andN is the number of times thatf is applied in cascade.
As defined, arepeat composite unit is a particular case of a
serial composite unit, since

repeat(U,N) = serial(U,U, . . . , U
︸ ︷︷ ︸

N times

)

whereU is a unit implementing a vector function (Figure 11).
Interestingly, the compiled expression generates automatically
a machine that implementsweight sharing[19], because all
partial contributions to the weight gradient (generated oneach
backward pass through unitU) are summed up.

x yU

repeat

×N

x yU U U

a)

b)

Fig. 11. A repeat composite unit.

Therepeat composite unit shown in panel (a) behaves like aserial composite
unit, applying a given unitU several times in cascade (b).

8

U

U

U

U

x1

x2

x3

xN

y1

y2

y3

yN

Fig. 12. A scan composite unit.

U

U

U

U

x1

x2

x3

xN

y0

y1

y2

y3

yN

Fig. 13. Extension for temporal processing.

A repeat composite unit is not exactly a relaxation-type
recurrent network because the relaxation depth is fixed. How-
ever, when those kind of networks are trained with gradient
descent, they are partially unfolded to generate a non-recurrent
aproximate architecture that can be trained using the usual
algorithms. In our approach, a simple redefinition of the
forward procedure, to be used only after training, allows to
implement relaxation.

C. Scanning

Another class of architectures that repeatedly apply a single
function are neural networks which perform a convolution on
its input, such asFIR Multilayer Perceptrons[16], [17] and
Convolutional Neural Networks[18]. Basically, both can be
thought as applying a function on a window that moves along
a single input vector. Based on this observation, let us derive
a simple implementation.

Without loss of generality, consider a functional operator
scan, which given a functionf and an inputx computes

scan(f,x) =

f(x1)
f(x2)

...
f(xN)

=

y1

y2

...
yN

= y (6)

wheref(xi) = yi andx is the concatenation of subvectorsx1

to xN each of the same size. Similarly asrepeat composite
units, ascan composite unit can be expressed in terms of a
parallel unit as follows

scan(U,N) = parallel(U,U, . . . , U
︸ ︷︷ ︸

N times

).

The scan functional operator provides a powerful glue to
build highly parallel architectures (Figure 12). A wide class

of architectures can be built by feeding thescan composite
unit using a projection unit that extracts local features and
concatenate them in a single vector. Local features typically
consist of a 1-D or 2-D window over the input vector (as-
sumed to be appropiately encoded). Letbuildviews(. . . , N)
denote the constructor of such a projection unit that builds
a concatenation ofN vector views from its input, then the
expression

serial(buildviews(. . . ,N), scan(U,N))

implements a convolutional architecture. It is worth emphasiz-
ing that the embedded filtering unitU is arbitrarily complex.

Temporal recurrence is implemented as an extension toscan

(Figure 13). Time is expanded spatially: the input represents
the whole time series and the output the result series. Thus,
the training set consist of a single input-target pair. Recurrence
is implemented by letting the underlying unitU to receive as
input the outputs from previous applications ofU during the
scanning procedure (assumed to be sequential). This schemeis
a form of backpropagation through time[16], [17]. Note that
this architecture has been reduced to a common backpropaga-
tion case. There is no need for a specific training algorithm.

D. Parameter injection

Some architectures require a direct access to view or ma-
nipulate their parameters. For instance, the approach proposed
in [34] details a self-referential network architecture that can
‘speak’ about its own weight matrix in terms of activations.
Examples like this are cases ofrole switching, where the
inputs/outputs of a unit act as another unit’s parameters, or
vice versa.

This can be achieved by parameter injection/ejection op-
erators (Figure 14). Aninjector composite unit splits its
input x into two parts x′ and w, which are repectively
the input and parameter vectors of its subunit. Similarly, an
ejector composite unit concatenates the output of its subunit
y′ together with its weightsw to form y. Although the
implementation of these composite units is simple, some care
has to be taken in order to define appropriate forward and
backward procedures.

x
w

x′
yU

injector

x

y
w

y′
U

ejectora) b)

Fig. 14. Weight injector and ejector.

E. Regularizers

Complex non-linear neural network models often have an
excess of free parameters which tend to generate mappings
with a lot of curvature and structure. This phenomenon, known
as thebias/variance dilemma, arises as the result of overfitting

9

to the noise of the data and leads to poor generalization [1],
[20].

To overcome this problem, regularization techniques have
been developed, which encourage smoother network mappings
by adding a penalization term to the error function [21]–[24].
Althought it has been found empirically that they can lead to
significant improvements in network generalization, theiruse
is not widespread, mainly due to their difficult implementation.

Weight Decay, one of the simplest regularizers, consists of
the sum of squared weights scaled by a decay constantα,
penalizing large weights:

α

2

∑

i

w2
i . (7)

This penality is easily stated as a regularizer operator, thus
allowing it to be applied to any underlying unit, contributing
to the global error without changing the unit’s output.

Let weightdecay(U,α) be the associated constructor, taking
the weights of a unitU with decay constantα. The example
MLP in figure 4 could then be regularized layer-wise as

mse(
serial(
weightdecay(affine(3, 4), α1),
logistic(4),
weightdecay(affine(4, 2), α2)

)).

This expression produces a MLP whose global error is given
by

Ẽ = E +
α1

2

∑

i

w2
i +

α2

2

∑

j

w′2
j .

whereE is the mean square error,wi andw′
j are the weights

of the first and second layer respectively.

F. Other neural architectures

The preceeding examples present implementations of impor-
tant concepts found in the literature, but the list is incomplete.
More examples that have been left out but are straightforward
to implement, are:

• Units: hyperbolic tangent and softmax activation func-
tions, cross entropy error function, parametric models.

• Unsupervised learning: training without target vectors,
dimensional reduction techniques using appropriately de-
fined regularizers.

• Mixtures and comitees: mixtures of experts, comitees of
networks.

• Kernel methods: kernel regression, radial basis function
networks with trainable centers.

V. I MPLEMENTATION AND TESTING

To test our design, we developed a Java library and a
C stand-alone implementation. The Java library has been
integrated to Matlab allowing a flexible manipulation and rapid
development.

We present below a selection of experiments using the Java
library which have been carried out on a PC with an AMD
Athlon 2400 Mhz processor and 512 Mb RAM. The objective

of the experiments is to validate the correct definition and
compilation of complex networks. Our results confirm that the
proposed framework leads to well defined machines trainable
with backpropagation.

A. Tight-encoder

The encoder/decoder problem is a well known test case for
neural networks. It is usually implemented using a MLP N-
M-N architecture. The weights are adjusted using an autoas-
sociative training where the desired output is the same as the
input. The training set contains theN canonical basis vectors
of the input space. The encoding is achieved as the result of the
middle layer. WhenM = log2N the encoder is called ‘tight’
because this is the minimal size for an optimal binary encoding
of the training set (however the network may use a non binary
encoding). Here we implemented the 256-8-256 tight-encoder.
The resulting MLP architecture has4360 trainable parameters.
The expression that defines the encoder is given by

cross-entropy(
serial(
affine(256, 8),
logistic(8),
affine(8, 256),
logistic(256)

)).

where cross-entropy(U) computes the cross-entropy error
over the outputs of unitU [1], [3]. Minimizing this error
function is equivalent to minimize theKullback-Leibler dis-
tanceif the outputs are interpreted as modelling a probability
distribution, which is convenient in this case.

Table I shows the results for 10 independent test runs
after 50 epochs using theresilient backpropagationtraining
algorithm [14]. Figure 15 illustrates the classification ofthe
network before and after training, togheter with the training
error evolution.

The results show that the compiled machines rapidly learn
an efficient encoding by a gradient based parameter optimiza-
tion algorithm.

TABLE I

TIGHT-ENCODER RESULTS.

Mean error [bits] 1.1098 ± 0.3058
Correct classification [%] 95.70 ± 0.0157
Execution time [s] 8.656 ± 0.1223

B. Iris data

The data set contains 3 classes of 50 instances each, where
each class refers to a type of iris plant (Iris Setosa, Iris
VersicolourandIris Virginica). One class is linearly separable
from the other 2, while the latter two are not linearly separable
from each other [35], [36]. Features are sepal length, sepal
width, petal length and petal width in centimeters.

In this case, a single layer of 3 quadratic neurons has been
used:

cross-entropy(quadratic(4, 3))

10

0 50 100 150 200 250
0

100

200

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

0 50 100 150 200 250
0

100

200

Class labels, epoch 1

real

pr
ed

ic
te

d

Class labels, epoch 50

real

pr
ed

ic
te

d

Training error

epoch

m
ea

n
er

ro
r

[b
its

]

Fig. 15. Tight-encoder classification and training error during 50 epochs.

The quadratic layer expands to the nested architecture of
simpler processing units described in subsection IV-A. As in
the previous experiment, the chosen error function was the
cross-entropy error. Table II shows the results for 10 randomly
initialized test runs after 300 epochs using theresilient back-
propagationtraining algorithm [14]. The resulting confusion
matrix for a typical run is shown in table III.

From the traning error graph illustrated in figure 16, we
can validate the compilation of the complex underlying ar-
chitecture. The compositional operators define machines that
seamlessly compute their forward and backward evaluations.

0 50 100 150 200 250 300
0

2

4

6

8

10
Training error

epoch

m
ea

n
er

ro
r

[b
its

]

Fig. 16. Training error for the Iris data set.

C. Additional remarks

In our implementation the network parameters can be frozen
by using a mask over the gradient vector. The masking
technique defines a constant mask vectorm that is multiplied

TABLE II

IRIS SET RESULTS.

Mean error [bits] 0.5056 ± 0.1390
Correct classification [%] 98.13 ± 0.0042
Execution time [s] 1.2719 ± 0.0475

TABLE III

CONFUSION MATRIX FOR IRIS SET.

real \ estimated Setosa Versicolour Virginica
Iris Setosa 49 1 0

Iris Versicolour 1 49 0
Iris Virginica 0 0 50

element-wise withẇ before the update is performed. This
technique allows the definition of a degree of sensitivity ofthe
parameters to changes. The parameters are frozen by setting
m = 0.

The compilation of some complex architectures could re-
quire a prohibitive amount of storage space for the gener-
ated execution sequence and the corresponding intermediate
buffers. There is trade-off between time and space. Either the
intermediate results are stored or they can be regenerated on
demand. The latter solution is to be preferred when there is not
enough space in memory. This problem arises for example in
convolutional neural networks, specially when the filtering unit
itself is complex and memory demanding. A small footprint
is also relevant for an optimal use of cache memory.

VI. CONCLUSIONS

We developed a flexible computational design to build
gradient-based learning machines. The scheme has been suc-
cessfully implemented and tested on complex architectures.
This framework is a step towards the generalization of
gradient-based training. It extends the applicability of back-
propagation to a wide class of learning machines, namely,
continuous vector functions with computable gradients. This
includes much of the existent neural architectures, avoiding the
need for ad-hoc training algorithms. Furthermore, nonfeed-
forward architectures are also considered, provided a partial
unfolding of their structure is sufficient for training, which is
the common case. The major achievements can be summarized
as follows:

1) Modular building design: Complex machines, tailored to
solve specific learning tasks, can be created using simple
building blocks. Invariant design constraints associated
to composition rules ensure the seamless integration of
subunits, so that the resulting learning system is capable
of computing its gradient in a recursive way.

2) Uncoupling of gradient computation: The parameter
gradient calculation procedure has been modularized,
allowing the application of the same first order train-
ing algorithms regardless of the machine architectural
complexity.

3) Standarization of architecture description: Our frame-
work proposes an operator based expression language
to describe neural architectures in a rapid, compact and
orthogonal way.

11

4) Easy regularization: Different types of regularization
terms may be inserted at arbitrary points within a
network to provide more stable training results and better
generalization.

5) Efficient implementation: The compiling procedures de-
fined for composition operators allow for a fast compu-
tation of the gradient.

ACKNOWLEGDEMENTS

The authors would like to thank Gonzalo Ruz and Michel
Tesmer for reviewing this text and for their fruitful comments.
This work was supported by FONDECYT (grant 1030141).

REFERENCES

[1] Bishop C. M., “Neural Networks for Pattern Recognition”, Oxford Uni-
versity Press, 1995.

[2] Simon Haykin, “Neural Networks: A Comprehensive Foundation”,
Macmillan College Publishing Company, 1994.

[3] Theodoridis S., Koutroumbas K., “Pattern Recognition”,Academic Press,
1999.

[4] Ripley, B.D., “Pattern Recognition and Neural Networks”, Cambridge
University Press, Cambridge, 1996.

[5] McCulloch, W. S., and Pitts, W., “A logical calculus of the ideas immanent
in nervous activity”, Bulletin of Mathematical Biophysics, 5:115-137,
1943.

[6] Bryson, A.E.Jr., Ho, Y.C., “Applied optimal control”, Blaisdel Publishing
Company, 1969.

[7] Werbos, P.J., “Beyond regression: New tools for prediction and analysis
in the behavioral sciences”, Ph.D. thesis, Harvard University, Cambridge,
MA, 1974.

[8] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning internal
representations by error propagation”. In Rumelhart, D. E. and McClel-
land, J.L., editors,Parallel Distributed Processing, Volume 1, chapter 8,
pp. 318-362. MIT Press, Cambridge, Massachusetts, 1986.

[9] Bottou, L., “Une approche th́eorique de l’apprentissage connexionniste:
applications̀a la reconnaissance de la parole”, Ph.D. thesis, Université de
Paris XI, Orsay, France, 1991.

[10] LeCun, Y., “A theoretical framework for back-propagation”. In D.
Touretzky, G. Hinton, and T. Sejnowski, editors,Proceedings of the 1988
Connectionist Models Summer School, pp. 21-28, CMU, Pittsburgh, PA,
1988. Morgan Kaufmann.

[11] Y. LeCun, L. Bottou, G.B. Orr and K.-R. M̈uller, “Efficient

backprop”, in “Neural Networks – Tricks of the Trade”,Springer

Lecture Notes in Computer Sciences 1524, pp. 5-50, 1998.

http://citeseer.ist.psu.edu/lecun98efficient.html

[12] Collobert, R., Bengio, S. and Mariéthoz J., “Torch: a
modular machine learning software library”,Technical
Report IDIAP-RR, pp. 02-46, IDIAP, 2002.

[13] Saarinen, S., Bramley, R.B. and Cybenko, G., “Neural
networks, backpropagation, and automatic differentiation”.
Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application, In Griewank, A. and Corliss,
G.F., editors, pp. 31-42, Philadelphia, PA, SIAM, 1992.

[14] Riedmiller M., Braun H., “A Direct Adaptive Method
for Faster Backpropagation Learning: The RPROP Algo-
rithm”, Neural Networks for Pattern Recognition”,Pro-
ceedings of the IEEE International Conference on Neural
Networks, San Francisco, CA, March 28-April 1, 1993.

[15] Hestenes, M.R. and Stiefel, E., “Methods of conjugate
gradients for solving linear systems”.Journal of Research
of the National Bureau of Standards, Vol. 49 (6), pp. 409-
436, 1952.

[16] Wan, E.A., “Temporal backpropagation for FIR neural
networks”,IEEE International Joint Conference on Neural
Networks, Vol. 1, pp. 575-580, San Diego, CA, 1990.

[17] Wan, E.A., “Temporal backpropagation: An efficient al-
gorithm for finite impulse response neural networks”. In
Touretzky, D.S., Elman, J.L., Sejnowski, T.J., and Hinton,
G.E., editors,Proceedings of the 1990 Connectionist Mod-
els Summer School, pp. 131-140, San Mateo, CA, Morgan
Kaufmann, 1990.

[18] LeCun, Y. and Bengio, Y., “Convolutional networks for
images, speech, and time series”,The handbook of brain
theory and neural networks, pp. 255-258, MIT Press,
Cambridge, Massachusetts, 1998.

[19] Shawe-Taylor, J. “Introducing invariance: a principled
approach to weight sharing”,Proceedings of the IEEE
International Conference on Neural Networks, Congress
on Computational Intelligence, pp. 345-349, Orlando, FL,
1994.

[20] Geman, S., Bienenstock, E. and Doursat, R., “Neural
Networks and the Bias/Variance Dilemma”,Neural Com-
putation, Vol. 4, pp. 1-58, 1992.

[21] Hinton, G.E., “Connectionist learning procedures”.Tech-
nical Report CMU-CS-87-115, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, 1987.

[22] Krogh, A. and Hertz, J. A., “A simple weight decay can
improve generalization”. In J.E. Moody, S.J. Hanson, and
R.P. Lippmann, editors. “Advances in Neural Information
Processing Systems”, Vol. 4, pp 450-957, San Mateo, CA,
1992. Morgan Kaufmann Publishers.

[23] Barlett, P.L., “For valid generalization, the size of the
weights is more important than the size of the network”.
In Mozer, M.C., Jordan, M.I., and Petsche, T., editors.
Advances in Neural Information Processing Systems, Vol.
9, pp. 134-140, The MIT Press, Cambridge, MA, 1997.

[24] Weigend, A. S., Rumelhart, D. E., & Huberman, B. A.,
“Generalization by weight-elimination with application to
forecasting”. In R. P. Lippmann, J. Moody, & D. S. Touret-
zky, editors.Advances in Neural Information Processing
Systems, Vol. 3, San Mateo, CA. Morgan Kaufmann, 1991.

[25] Lee, T.-C., Peterson, A.M., and Tsai, J.-C., “A multi-layer
feed-forward neural network with dynamically adjustable
structures”. IEEE International Conference on Systems,
Man, and Cybernetics, pp. 367-369, Los Angeles, CA,
1990.

[26] LeCun, Y., Denker, J.S., and Solla, S.A., “Optimal brain
damage”.Advances in Neural Information Processing Sys-
tems 2, In Touretzky, D.S., editor, pp. 598-605, San Mateo,
CA. Morgan Kaufmann, 1990b.

[27] Hassibi, B., Stork, D.G., and Wolff, G.J., “Optimal brain
surgeon and general network prunning”.IEEE Interna-
tional Conference on Neural Networks, Vol. 1, pp. 293-
299, San Francisco, CA, 1993.

[28] Aho, A. V., Sethi, R., Ullman, J. D., “Compilers”,
Addison Wesley, 1986.

[29] Cybenko, G., “Approximation by superposition of a
sigmoidal function”.Mathematics of Control, Signals and
Systems, Vol. 2, pp. 303-314, 1989.

12

[30] Hornik, K., “Approximation capabilities of multilayer
feedforward neural networks”.Neural Networks, Vol. 4,
pp. 251-257, 1990.

[31] Buchholz, S. and Sommer, G., “A hyperbolic multilayer
perceptron”.International Joint Conference on Neural Net-
works, Como, Italy, Vol. 2, pp. 129-133. IEEE Computer
Society Press, 2000.

[32] Lipson, H. and Siegelmann, H.T., “Clustering irregular
shapes using high-order neurons”.Neural Computation,
12(10):2331-2353, 2000.

[33] Banarer, V., Perwass, C., Sommer, G., “The hypersphere
neuron”.ESANN’2003 proceedings - European Symposium
on Artificial Neural Networks, Vol. 4, pp. 469-474, Bruges,
Belgium, 2003.

[34] Schmidhuber, J., “A self-referential weight matrix”,Pro-
ceedings of the International Conference on Artificial Neu-
ral Networks, Springer, pp 446-451, Amsterdam, 1993.

[35] Fisher, R. A., “The use of multiple measurements in
taxonomic problems”,Annual Eugenics, Springer, Vol.
7, Part II, pp. 179-188, 1936; also in “Contributions to
Mathematical Statistics”, John Wiley, NY, 1950.

[36] Duda, R.O. and Hart, P.E., “Pattern Classification and
Scene Analysis”, (Q327.D83) John Wiley & Sons, ISBN
0-471-22361-1, pp. 218, 1973.

