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Abstract: The design of optimal adaptive controllers is usually based on heuristics, because solving Bellman’s equations

over information states is notoriously intractable. Approximate adaptive controllers often rely on the principle

of certainty-equivalence where the control process deals with parameter point estimates as if they represented

“true” parameter values. Here we present a stochastic control rule instead where controls are sampled from

a posterior distribution over a set of probabilistic input-output models and the true model is identified by

Bayesian inference. This allows reformulating the adaptive control problem as an inference and sampling

problem derived from a minimum relative entropy principle. Importantly, inference and action sampling both

work forward in time and hence such a Bayesian adaptive controller is applicable on-line. We demonstrate the

improved performance that can be achieved by such an approach for linear quadratic regulator examples.

1 INTRODUCTION

Learning how to act in an unknown environment
poses the problem of adaptive control (Åström and
Wittenmark, 1995). Solving adaptive control prob-
lems optimally is a notoriously hard problem because
it requires the solution of Bellman’s optimality equa-
tions over large trees of information states, which
becomes quickly intractable. Therefore, a number
of approximate adaptive control methods have been
devised in the literature (Åström and Wittenmark,
1995). Most heuristics for adaptive control are based
on the certainty-equivalence principle, i.e. when they
estimate the unknown plant parameters, the uncer-
tainty of these estimates has no impact on the perti-
nent control strategies. Instead, a point estimate of
the system parameters is treated as if it represented
the “true” system parameters.

It is well known in optimal control theory that the
certainty-equivalence principle holds exactly for lin-
ear quadratic systems with known dynamics (Åström
and Wittenmark, 1995). In case of adaptive control,
however, the certainty-equivalence principle breaks
down in general and is only used as a heuristic. In
fact, previous studies have shown that even for the
linear quadratic controller correct closed-loop system
identification cannot be guaranteed under certainty-
equivalence, which has led to the proposal of cost-
biased estimators (Campi and Kumar, 1996). Non-

certainty-equivalent controllers are usually designed
as extensions of a certainty-equivalent solution, such
as cautious or dual controllers that reduce the con-
trol gain in the face of high parameter uncertainty or
actively probe the environment by random excitation
(Wittenmark, 1975). Here we propose a non-certainty
equivalent approach to adaptive control based on a
Bayesian control rule derived from a minimum rel-
ative entropy principle. We demonstrate how such an
approach can be employed to solve adaptive control
problems with linear dynamics and quadratic cost.

2 A BAYESIAN RULE FOR

ADAPTIVE CONTROL

In the following we assume that the observations of
our controller are given by a state variable xt and the
possible actions of our controller are ut . The con-
troller can then be defined as an input-output system
that is characterized by the conditional probabilities

P(xt+1|x≤t ,u≤t) and P(ut+1|x≤t+1,u≤t)

where x≤t = x1,x2, . . . ,xt and u≤t = u1,u2, . . . ,ut de-
note concatenations of past states and actions respec-
tively. Analogous to the controller, the plant can be
thought of as an input-output system with conditional
probabilities

Q(ut+1|x≤t+1,u≤t) and Q(xt+1|x≤t ,u≤t).
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(Åström am andndndndndnd˚̊

veve cocontntrol prob-b-
arard pd pd pd proroblblblblblblblememememememememememem becaususee

lmananananan’s’s’s’s’s’s’s’s’s’s opopopopopoptititititititimamamamamamamamalilililililililililililitytytyty eqeqeqeqeqeqequauauauaua-
nforororormamamamamamamamamamamamamatititititititititionon stststststatatatateseseseseseseseses, w, w, w, w, w, w, w, w, w, w, w, whihihihihichchchchchchch

table.e. ThThThThThThThThTherererefefefefeforore,e,e,e, a na na na na na numumumumumumumbebebebebeberrrr
ive conontrtrtrtrtrtrtrolololololololol mememememeththododododods hs hs hs hs havavave be be be be be be be be beennnn
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If the controller can perfectly predict the plant for all
histories x≤t ,u≤t then

P(xt+1|x≤t ,u≤t) = Q(xt+1|x≤t ,u≤t).

In this case the plant equation is perfectly known and
the controller P can be tailored to the particular plant
Q. Especially, the control law P(ut+1|x≤t+1,u≤t) can
be chosen in such a way that it maximizes some opti-
mality criterion given full knowledge of the plant Q.

Consider now the case when the controller does
not know the plant dynamics, but assume we know
that the plant has dynamicsQm drawn randomly from
a set Q of possible dynamics indexed by m. Assume
further we have available a set of tailored controllers
Pm, where each Pm is tailor-made for one of the possi-
ble plants Qm. The set of possible plant dynamics and
tailored controllers can then be expressed as condi-
tional probabilities given by the following likelihood
and intervention models

P(xt+1|m,x≤t ,u≤t) and P(ut+1|m,x≤t+1,u≤t)

withm∈M indexing the different plant dynamicsQm

and the different tailored controllers Pm. How can we
now construct a controller P such that its behavior is
as close as possible to the tailored controller Pm under
any realization of Qm ∈ Q ?

A convenient measure of how much P deviates
from Pm is given by the relative entropy. In particu-
lar, we can quantify the average deviation of a control
law P(ut+1|x≤t+1, ū≤t) from the tailored control law
P(ut+1|m,x≤t+1, ū≤t) of Pm by computing
〈

DKL

(

P(ut+1|m,x≤t+1, ū≤t)||P(ut+1|x≤t+1, ū≤t)
)

〉

where the average is taken with respect to a prior
P(m) and all possible input-output sequences with
probabilities P(x≤t+1ū≤t |m). The bar symbol ū≤t in-
dicates that past actions have been set by the con-
troller and therefore have to be formalized as inter-
ventions (Pearl, 2000; Ortega and Braun, 2010). One
can then show that the above quantity is minimized
by the following control rule.

Theorem 1 (Bayesian Control Rule).

P(ut+1|x≤t+1, ū≤t)

= ∑
m

P(ut+1|m,x≤t+1,u≤t)P(m|x≤t+1, ū≤t)

where P(m|x≤t+1, ū≤t) is given by the recursive ex-
pression

P(m|x≤t+1, ū≤t)

=
P(xt+1|m,x≤t ,u≤t)P(m|x≤t , ū<t)

∑m′ P(xt |m′,x≤t ,u≤t)P(m′|x≤t , ū<t)
(1)

The proof can be found in (Ortega and Braun,
2010). Here we apply the Bayesian control rule
to adaptive control. It describes a mixture distri-
bution over different tailored controllers indexed by
m, each of them suggesting the next control signal
ut+1 with probability P(ut+1|m,x≤t+1,u≤t). The mix-
ture weights are given by the posterior probability
P(m|x≤t+1, ū≤t). It resembles Bayesian inference in
that it starts out with a prior distribution over input-
output models index by m and computes a posterior
distribution after experiencing an interaction. Actions
can then be sampled from this posterior distribution.

3 LINEAR QUADRATIC

REGULATOR

A linear quadratic regulator is characterized by a lin-
ear dynamical system and a quadratic cost function.
In the following we will deal with the time-discrete
case. Formally, let xt ∈ R

N be the state vector of the
plant at time t, ut ∈R

M be the action of the controller,
and F ∈R

N×N and G ∈R
N×M the time-invariant sys-

tem matrices describing the dynamics of the plant
such that

xt+1 = Fxt +Gut + ξt

where ξt ∈ R
N is a Gaussian random variable with

known covariance matrix Ωξ. Furthermore, let ct be
the scalar instantaneous cost

ct(xt ,ut ) = xTt Qxt +u
T
t Rut

where R ∈ R
M×M is positive definite and Q ∈ R

N×N

is positive semi-definite. Thus, the time-average cost
J is given by

J(xt ,ut ) = lim
T→∞

1

T

T−1

∑
t=0

ct(xt ,ut ).

If the matrices F,G,Q and R are all known the op-
timal controller has a well-known solution that is a
simple state-feedback law

u∗t =−L∗xt

where L∗ can be computed from the algebraic Riccati
equation (Stengel, 1993).

3.1 Indirect Adaptive Bayesian Control

In this section we will assume that we know the cost
matrices Q and R, but have to estimate F and G dur-
ing the control process. Since we have to estimate
them explicitly in order to compute the optimal policy
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L∗ this is often called model-based or indirect adap-
tive control. This means we have to deal with an in-
ference problem—estimating F and G—and an opti-
mal control problem—generating control commands
given the estimates F̂ and Ĝ.

In order to solve the estimation problem we use
an Unscented Kalman Filter (UKF) in our simu-
lation experiments because it can estimate Gaus-
sian random variables both under linear and nonlin-
ear circumstances (Julier and Durrant-Whyte, 1995;
Haykin, 2001). The parameter vector we want to
estimate is given by the vectorized system matrices
ŵ= vec([F̂;Ĝ]). Initially, we assume a Gaussian prior
over ŵ0. We model the evolution of the parameter es-
timate as a Brownian diffusion process given by

ŵt+1 = ŵt + ωt (2)

where ω ∈ R
N(N+M) is a Gaussian random variable

with covariance matrix Ωω. The covariance matrix
determines the step size of the adaptation process.
The likelihood model needed for the inference pro-
cess is provided by

P(xt+1|ŵ,xt ,ut)

∝ e
− 1

2

(

xt+1−F̂xt−Ĝut
)T

Ω−1
ξ

(

xt+1−F̂xt−Ĝut
)

(3)

The adaptation rate Ωω can be adjusted dynamically
depending on how well the current parameter esti-
mates fit the observations. In case of poor predictions
this should lead to high variability and fast adapta-
tion in big steps, in case of very good predictions this
should implies only small adaptation steps. This can
be implemented using a Robbins-Monroe innovation
update

Ω
(t+1)
ω = (1−α)Ω

(t)
ω + αIt

It = Kŵt

[

xt+1− x̂t+1

][

xt+1− x̂t+1

]T

(Kŵt )T

where Kŵt is the Kalman gain as used in the UKF
and x̂t+1 stems from the prediction step of the UKF
(Haykin, 2001).

In order to solve the control problem we have
to use the current estimate ŵ = vec([F̂;Ĝ]) to com-
pute the optimal control commands. A certainty-
equivalent self-tuning regulator would simply take the
mean estimate E[ŵ] and use this estimate in the alge-
braic Riccati equation at every point in time as if it
was the true parameter vector. While this often works
fine if only a few parameters of the matrix are un-
known, in general this can lead to suboptimal solu-
tions. Instead, we propose to use the Bayesian control
rule as laid down in equation (1). This means we have
to specify a likelihood and an interventionmodel. The

likelihoodmodelP(xt+1|ŵ,x≤t ,u≤t) is given by equa-
tion (3). The intervention model is deterministic and
given by

P(ut+1|ŵ,x≤t+1,u≤t) ∝ δ
(

ut+1 +Lŵxt+1

)

It might seem that this would imply taking the en-
tire probability distribution over ŵ and propagating it
through the Riccati equation. Then we would sample
an L at each point in time to determine ut+1. Fortu-
nately, an explicit computation of the posterior is not
necessary. We can simply sample from the distribu-
tion over ŵ, propagate this sampled value through the
Riccati equation and obtain a sampled policy L. The
more precise the estimates over ŵ are going to be, the
more precise the sampled policies L will get.

Example. In many motor control studies the hand
is modeled as a point mass, where the state vector xt
comprises position and velocity in the plane (Todorov
and Jordan, 2002). In a discrete state space this yields
the following equation:

xt+1 =

(

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

)

xt +

(

0 0
∆t/m 0
0 0
0 ∆t/m

)

ut + ξt

where we chose ξt to be distributed according to

ξt ∝ N

[

0,
√

∆t

(

0 0 0 0
0 1/4 0 0
0 0 0 0
0 0 0 1/4

)]

The noise ξt models uncertainty in the force produc-
tion when controlling the mass point. In our simu-
lation of a reaching task with unknown system dy-
namics the controller had to learn to bring the mass
point from the periphery to the center of the coordi-
nate system trying to find the optimal feedback gains.
This requires estimating a 24-dimensional parame-
ter vector w and sampling a 2× 8-dimensional feed-
back gain. We chose the following parameter set-
tings: ∆t = 0.01, m = 1, R = [[0.001,0]; [0,0.001]],
Q = [[1,0,0,0]; [0,0.01,0,0]; [0,0,1,0]; [0,0,0,0.01]]
and α = 0.05 for the UKF. The results can be seen in
figure 1. The first entry of the parameter vector ŵ is
depicted in figure 1a, the first entry of the correspond-
ingly sampled L is depicted in figure 1b. After an ini-
tial exploration phase in which L is sampled from a
broad distribution the controller settles down and only
samples from a very narrow distribution centered at
the optimal value. Figure 1c,d shows initial and final
trajectories and speed profiles: initially amorphous, a
straight-line movement is learned with a bell-shaped
speed profile. Importantly, the Bayesian controller
converges much faster to the correct feedback gain
than the certainty-equivalent controller which never

(3)
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fully reached the optimal value in our simulation—
compare figure 1e,f. In the following table the mean
absolute feedback gain error—the difference between
optimal feedback gain and actually executed feedback
gain—is shown averaged over the last 3000 time steps
of 100 runs. We have also averaged over all 2× 8
feedback gains.

Abs. Error

Certainty Equivalent Controller 8.26±0.01
Bayesian Control Rule 2.085±0.002

The results show that the Bayesian control rule in-
curs approximately 4 times less error on average than
the certainty-equivalent controller in this example. To
ensure that this result does not depend on the par-
ticular system we chose we ran the same simulation
but all the entries of the true F and G were drawn
randomly from a uniform distribution [0;1] in each
run, with 100 runs in total. However, these random
draws were “frozen” such that both controllers faced
the same random variables and differences cannot be
attributed to different random draws. Each run of this
simulation had 500 time steps and we compared the
feedback gain error in the last 100 time steps.

Abs. Error

Certainty Equivalent Controller 0.536±0.002
Bayesian Control Rule 0.111±0.001

On average the Bayesian control rule incurred ap-
proximately 5 times less error than the certainty-
equivalent controller.

3.2 Direct Adaptive Bayesian Control

The adaptive linear quadratic control problem can be
reformulated in a way that does not require estimat-
ing the system matrices F and G explicitly (Bradtke,
1993). Instead we can work directly on the policy
space and assign a Q value to each policy such that
the Q value of policy L is given by

QL(xt ,ut) = ct(xt ,ut )+
(
Fxt +Gut

)T
VL

(
Fxt +Gut

)

where VL corresponds to the cost-to-go function.
Thus, QL(xt ,ut ) can be expressed as a quadratic form
(
xt
ut

)T (
Q+FTVLF FTVLG

GTVLF R+GTVLG

)

︸ ︷︷ ︸

=

[

M11 M12

M21 M22

]

(
xt
ut

)

The matrixM ∈R
(N+M)(N+M) is positive definite and

represents the Q value of policy L. The relationship
betweenM and L is given by

L=−M−1
22M21 (4)

as can be readily seen when computing
∂utQL(xt ,ut) = 0. Previous studies have applied
Q-learning to solve this direct adaptive control prob-
lem by reinforcement learning methods (Bradtke,
1993). Here we want to transform it into an inference
problem. To this end, we need to relate M to an ob-
servable quantity in a way that is independent of the
policy that is currently executed by the controller. We
can achieve this by noting that Bellman’s optimality
equation imposes a recurrent relationship between
consecutive Q values, namely

QL(xt ,ut) = ct(xt ,ut)+QL(xt+1,−Lxt+1) (5)

Since ct is an observable quantity we can take it
on one side of the equation and put all Q -quantities
of equation (5) on the other side. Only the “true”
Q -function can predict all ct for all data points
{xt ,ut ,xt+1}. Thus, we can use this relationship to
do inference overM where

ĉt =

(
xt
ut

)T

M

(
xt
ut

)

−

(
xt+1

−M−122M21xt+1

)T

M

(
xt+1

−M−122M21xt+1

)

Assuming Gaussian noise with known variance σ2 for
the cost observations we obtain the following likeli-
hood model for our Bayesian controller:

P(ct |M,xt ,xt+1,ut) ∝ exp

[

−
1

2σ2

(

ĉt − ct

)2
]

The intervention model is again deterministic:

P(ut+1|M,xt+1,xt ,ut ) ∝ δ
(

ut+1 +M−1
22M21xt+1

)

Doing inference overM is complicated by three facts:
(i) the likelihood model is highly nonlinear in the
parameters, (ii) M must be constrained to the set
of positive definite matrices and (iii) M will be ill-
conditioned in many examples because the different
parts of the matrix differ usually by various orders of
magnitude, as for example the unknown cost matri-
ces Q and R are often of different orders of magni-
tude. Here we can only address problem (i) and (ii),
i.e. the examples to demonstrate the Bayesian con-
troller have to be well-conditioned—which is, for in-
stance not true for the previous simulation. With re-
gard to (i) we found that for this inference process the
UKF only works robustly when the propagatedmeans
are simply computed as an un-weighted average over
sigma points instead of the more common weighted
average. With regard to (ii) we note that any positive
definite matrix can be expressed as a product of its
unique Cholesky factors: M =mTm where m is up-
per triangular with diagonal elements strictly positive.
Then we can do inference over m with the simpler
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Figure 1: Results. (a-d) Learning to move a mass point when the system dynamics matrices F and G are unknown. A single

run of the control process is shown. (a) Temporal evolution of estimate of the first entry of F̂ and the respective uncertainty
as represented by the Kalman filter. (b) Sampled feedback gain—only the first entry of L is shown. The initial exploration
phase is followed by a stable performance after 400 time steps. The thin red line indicates the optimal feedback gain. (c,d)
Trajectories and speed profiles. Initially, the trajectory takes a random direction with an amorphous speed profile (blue curves).
Later movement trajectories are straight and speed profiles bell-shaped (black curves). Panels (e-f) show sampled feedback
gains over 100 runs. (e) Mean executed feedback gain. The certainty-equivalent controller (CEC) slowly converges to the
region of optimal feedback gains. The exact optimal value was not reached in this simulation. The Bayesian control rule
(BCR) converges very fast to the optimal feedback gain. (f) Variance of executed feedback gain. The Bayesian controller
that used sampled feedback gains converges much faster than the certainty-equivalent controller. (g,h) Learning to move a
mass-less point when both the system dynamics matrices F and G and the cost matrices Q and R are unknown. (g) Bayesian
Control Rule. Trajectories of the first and last 5 trials. Initially, movements are undirected but later converge to straight line
movements. The pertinent cost converges to the optimum. (h) Policy Iteration. Trajectories of the first and last 5 trials. The
trajectories are wiggly because noise has to be added to the controller for exploration. Due to this extra noise the controller
cannot converge to the optimal cost.

constraint that the diagonal elements must be posi-
tive. In our simulation we implemented this constraint
by simply discarding any Kalman filter updates that
would violate it. In general, such constraints can be
easily implemented using particle filters.

Example. A simple well-conditioned example is a
mass-less particle that moves around in the plane. The
system dynamics can be formalized as:

xt+1 =
(

1 0
0 1

)

xt +
(

1 0
0 1

)

ut

The observations are noisy observations of the cost

ct = xTt Qxt +u
T
t Rut + ξt

where ξt is a normally distributed scalar variable with
variance σobs = 0.1. Both Q and R were assumed to
be identity matrices and α = 0.5 as previously. This
is a 10-dimensional estimation problem. Figure 1g
shows that the Bayesian controller managed to find
the optimal control solution only relying on inference
and sampling. We compared against a policy iteration
algorithm for linear quadratic controllers as proposed
in (Bradtke, 1993) – compare Figure 1h. In the lat-
ter exploration can only be achieved by adding extra
noise to the control command. Note that the Bayesian
control rule incurs this noise automatically by sam-
pling from the posterior. We simulated 100 trials with
50 time steps each.

To ensure again that this result does not depend on
the particular system we chose we ran another simula-
tion where each entry of F andGwere drawn from the
uniform distribution [0;1] and Q and R were drawn
from an inverse Wishart distribution with identity co-
variance matrix and degree of freedom 2. The noise
was again “frozen” for comparison between the two
algorithms. We compared the absolute error between
the optimal and the actually executed feedback gain
over the last 20 trials. The Bayesian control rule out-
performed the policy iteration algorithm roughly by
factor 5.

Abs. Error

Policy Iteration (Bradtke, 1993) 2.5±0.1
Bayesian Control Rule 0.55±0.01

4 CONCLUSIONS

In this paper we suggest a minimum relative entropy
formulation of adaptive control problems when the
plant dynamics are unknown but known to belong to
a pre-defined set of possible dynamics. This formu-
lation has an explicit solution given by the Bayesian
control rule, a stochastic rule for adaptive control.
We have presented two example classes that show
how adaptive linear quadratic control problems can
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be tackled using this problem formulation. Usually,
adaptive controllers rely on the certainty equivalence
principle and ignore parameter uncertainty in the con-
trol process (Åström and Wittenmark, 1995). In con-
trast, a controller based on the Bayesian control rule
considers this uncertainty for balancing exploration
and exploitation in a way that minimizes the expected
relative entropy with regard to the true control law.

In particular, indirect control methods provide an
interesting perspective here, because they allow solv-
ing the adaptive control problem purely based on in-
ference and sampling methods that can be recruited
from a rich arsenal in machine learning. Both infer-
ence and action sampling work forward in time and
are therefore applicable online. Also they do not re-
quire different phases of policy evaluation and policy
improvement as some of the previous reinforcement
learning methods. Inference can be done online in-
dependent of the sampled policy. Several other stud-
ies have previously proposed to solve adaptive con-
trol problems based on inference methods (Toussaint
et al., 2006; Engel et al., 2005; Haruno et al., 2001).
Crucially, however, these studies have concentrated
on the observation part of the learning problem with
no principled solution for the action selection prob-
lem. Usually, exploration noise has to be introduced
in an ad hoc fashion in order to avoid suboptimal per-
formance. In contrast, the minimum relative entropy
cost function naturally leads to stochastic policies.

The main contribution of this study is to illustrate
how a relative entropy formulation can be applied to
solve an adaptive control problem. This is done by
deriving a stochastic controller based on the Bayesian
control rule for the LQR problem with unknown sys-
tem and cost matrices. Similar minimum relative en-
tropy formulations have recently also been proposed
to solve optimal control problems with known system
dynamics (Todorov, 2009; Kappen et al., 2009). How
these two approaches for adaptive and optimal control
relate is an interesting question for future research.
Also, the Bayesian control rule suggested here could
in principle be employed to solve more general adap-
tive control problems with possibly nonlinear dynam-
ics. However, finding optimal tailored controllers for
complex sub-environments can in general be highly
non-trivial. Therefore, finding inference and sam-
pling methods that work for more general classes of
adaptive control problems poses a future challenge.
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