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Abstract—Path integral methods [7], [15],[1] have recently been
shown to be applicable to a very general class of optimal control
problems. Here we examine the path integral formalism from
a decision-theoretic point of view, since an optimal controller
can always be regarded as an instance of a perfectly rational
decision-maker that chooses its actions so as to maximize its
expected utility [8]. The problem with perfect rationality is,
however, that finding optimal actions is often very difficult due
to prohibitive computational resource costs that are not taken
into account. In contrast, a bounded rational decision-maker
has only limited resources and therefore needs to strike some
compromise between the desired utility and the required resource
costs [14]. In particular, we suggest an information-theoretic
measure of resource costs that can be derived axiomatically
[11]. As a consequence we obtain a variational principle for
choice probabilities that trades off maximizing a given utility
criterion and avoiding resource costs that arise due to deviating
from initially given default choice probabilities. The resulting
bounded rational policies are in general probabilistic. We show
that the solutions found by the path integral formalism are such
bounded rational policies. Furthermore, we show that the same
formalism generalizes to discrete control problems, leading to
linearly solvable bounded rational control policies in the case
of Markov systems. Importantly, Bellman’s optimality principle
is not presupposed by this variational principle, but it can be
derived as a limit case. This suggests that the information-
theoretic formalization of bounded rationality might serve as
a general principle in control design that unifies a number of
recently reported approximate optimal control methods both in
the continuous and discrete domain.

I. INTRODUCTION

In decision theory, a decision-maker is typically assumed
to have preferences over a set of objects that are part of a
choice set [8]. These objects can be simple monolithic objects
(e.g. different fruits in a fruit bowl) or complex lotteries of
processes with random outcomes (e.g. a sequence of roulette
wheels with different outcomes and outcome probabilities).
If the decision-makers’ preferences fulfill certain axioms like
completeness and transitivity then the preferences can be
represented by a utility function over outcomes and the
decision-maker’s choices can be modeled as the maximization
of the expected utility [18], [4]. Such decision-makers are
called (perfectly) rational [12]. Optimal control is a particular
instance of rational decision-making, where the choice set is
given by all possible probability distributions over trajectories
conditioned on different control laws.

While perfect rationality provides a sound normative ba-
sis for decision-making, the problem is that finding optimal
actions can be a very difficult problem, because the search

for the optimal action is itself associated with a cost that
is not accounted for by the principle of maximum expected
utility. Therefore, the concept of bounded rationality has been
propounded to characterize decision-makers that have limited
resources and cannot afford an unlimited search of the optimal
action [14], [13]. Instead, bounded rational actors trade off
the utility that an action achieves against the cost of finding
the action. In the following we formalize bounded rational
decision-making based on three axioms relating choice prob-
abilities and utilities, which leads in general to probabilistic
choice behavior that cannot be formalized by classic decision
theory [11], [10], [9]. These choice probabilities also imply
a variational principle that we use to derive bounded rational
controllers. We show that the path integral approach [6], [7],
[15] fits within this framework. Furthermore, we show that a
related approach to discrete control [16] can also be explained
by the same framework. The main contribution of the current
paper is therefore not so much on the algorithmic level, but
rather on the conceptual and mathematical level, providing
a unifying framework for a number of recently published
approximate optimal control methods.

II. BOUNDED RATIONALITY

A. Resource Costs

A bounded rational decision-maker should not only consider
the gain in expected utility of a particular choice, but also
the resource costs entailed by this choice [14]. This raises
the question of how to measure resources. Here we follow a
thermodynamic argument [3] that allows measuring resource
(or information) costs in physical systems in units of energy.
The generality of the argument relies on the fact that ultimately
any real agent has to be incarnated in a physical system,
as any process of information processing must always be
accompanied by a pertinent physical process [17]. In the
following we conceive of information processing as changes
in information states (i.e. ultimately changes of probability
distributions), which consequently implies changes in physical
states, such as flipping gates in a transistor, changing voltage
on a microchip, or even changing location of a gas particle.
Imagine, for example, that we use a gas particle in a box with
volume Vi as an information processing system to represent a
uniform probability distribution over a random variable with
pi = 1

Vi
. If we now want to update this probability to pf ,

because we gained information − log p = − log pi

pf
> 0, we

have to reduce the original volume to Vf = pVi. However, this



decrease in volume requires the work W = − ∫ Vf

Vi

NkT
V dV =

NkT ln Vi

Vf
, where N is the number of gas molecules, k is

the Boltzmann constant, and T is temperature. Thus, in this
simple example we can compute the relation between the
change in information state and the required work, that is
W = −α log p, with α = kT

log e > 0 being the conversion factor
between information and energy. Depending on the physical
properties of the system this conversion factor is going to make
information processing more or less expensive. In the next two
sections, we derive a general expression of information costs
for physical systems that implement optimal controllers. As
such controllers optimize utility functions (or cost functions),
we will first investigate the relation between information states
and utilities and then show how information costs appear as
an additional term in the utility in physically implemented
controllers.

B. Conversion between Utility and Information

Consider a sample set Ω of possible outcomes and a σ-
algebra F of measurable events between which a decision-
maker can choose. We assume that the decision-maker can
freely choose any probability measure P over the outcomes
and that the decision-making process can consequently be
modeled as a probability space (Ω,F ,P). To formalize choice
behavior, we postulate that a decision-maker (stochastically)
prefers event A over event B if P(A) > P(B). As in the
case of classic decision-theory, we would like to express this
preference with a desirability or utility function U. We have
previously proposed the following postulates [11], [10], [9].

Definition. Let (Ω,F ,P) be a probability space. A function
U : F → R is a utility function for P iff the conditional
utility U(A|B) := U(A∩B)−U(B) has the following three
properties for all events A,B, C, D ∈ F :
• real-valued: ∃f,U(A|B) = f (P(A|B)) ∈ R

• additive: U(A ∩B|C) = U(A|C) + U(B|A ∩ C)

• monotonic: P(A|B) > P(C|D)
⇔ U(A|B) > U(C|D)

Note that the conditional utility measures differences between
utilities, similar to scalar potentials in physics. Accordingly,
the absolute values of utilities are irrelevant and the only thing
that matters are utility differences. As the following theorem
shows, these postulates enforce a unique mapping between the
utility and the probability space.

Theorem. If a mapping f is such that U(A|B) =
f(P(A|B)) for any probability space (Ω,F ,P), then f is of
the form

f(·) = α log(·), (1)

where α > 0 is arbitrary strictly positive constant. The proof
is provided elsewhere [11], [10], [9]. The constant α provides
the conversion factor between utilities and information.

A probability measure P and a utility function U that satisfy
(1) form a conjugate pair. Accordingly, given a utility U over
a set of measurable events, its corresponding probability can

be determined by the Gibbs measure with temperature α and
energy levels −U(ω), i.e. the measure given by

P(A) =
∑

ω∈A e
1
α U(ω)

∑
ω∈Ω e

1
α U(ω)

(2)

for all A ∈ F and U(ω) = U({ω}). As we will see further
down, this log/exp-conversion between the probability and
utility space also lies at the heart of the path integral formal-
ism. It was originally proposed by Schrödinger and has been
introduced into control theory by Fleming [5]. Here we derived
it axiomatically from decision-theoretic considerations.

C. A Variational Principle for Bounded Rationality

It is well known in statistical physics that the Gibbs measure
satisfies a variational problem in the free energy [2]. Since
utilities correspond to negative energies, we can formulate a
free utility that is maximized by a decision-maker that acts
according to (2).

Theorem. Let X be a random variable with values in X .
Let P and U be a conjugate pair of probability measure and
utility function over X . Define the free utility functional as

J(Pr;U) =
∑

x∈X
Pr(x)U(x)− α

∑

x∈X
Pr(x) log Pr(x), (3)

where Pr is an arbitrary probability measure over X . Then,

J(Pr;U) ≤ J(P;U) = U(Ω).

The proof can be obtained by applying Jensen’s inequality. By
inserting the Gibbs measure P into the free utility equation
J, we find that the extremal of the free utility is given by the
log-partition sum J(P;U) = α log

∑
ω∈Ω e

1
α U(ω).

This variational principle also allows conceptualizing trans-
formations of stochastic systems. Consider an initial system
described by the conjugate pair Pi and Ui. This system
has free utility Ji(Pi,Ui). We now want to transform this
initial system into another system by adding new constraints
represented by the utility function U∗. Then, the resulting
utility function Uf is given by the sum

Uf = Ui + U∗,

and the resulting system has the free utility Jf (Pf ,Uf ). The
difference in free utility is

Jf − Ji =
∑

x∈X
Pf (x)U∗(x)− α

∑

x∈X
Pf (x) log

Pf (x)
Pi(x)

. (4)

In physical systems with constant α, this difference measures
the amount of work necessary to change the state of the
system from state i to state f . The first term of the equation
measures the expected utility difference U∗(x) in the final
state f , while the second term measures the information cost
of transforming the probability distribution from state i to
state f . These two terms can be interpreted as determinants
of bounded rational decision-making in that they formalize
a trade-off between an expected utility U∗ (first term) and
the information cost of transforming Pi into Pf (second



term). In this interpretation Pi represents an initial choice
probability or policy, which includes the special case of the
uniform distribution where the decision-maker has initially no
preferences between the different choices. The probability Pf

is the final choice probability that we are looking for since it
considers the utility constraint U∗ that we want to optimize.
We can then formulate a variational principle for bounded
rationality in the probabilities Pf (x)

arg max
Pf (x)

(∑

x∈X
Pf (x)U∗(x)− α

∑

x∈X
Pf (x) log

Pf (x)
Pi(x)

)
.

(5)
The solution to this variational problem is given by

Pf (x) ∝ Pi(x) exp
(

1
α
U∗(x)

)
.

In particular, at very low temperature α ≈ 0, the maximum
expected utility principle is recovered as

Jf − Ji ≈
∑

x∈X
Pf (x)U∗(x),

and hence resource costs are ignored in the choice of Pf ,
leading to Pf ≈ δx∗(x), where x∗ = arg maxx U∗(x).
Similarly, at a high temperature, the difference is

Jf − Ji ≈ −α
∑

x∈X
Pf (x) log

Pf (x)
Pi(x)

,

and hence only resource costs matter, leading to Pf ≈ Pi.

D. Examples

In the following we discuss some toy examples to provide
more intuition about bounded rationality in simple systems.

1) Information Costs in Control: Consider a binary poten-
tial well with two states L and R that have initial potentials
Vi(L) = Vi(R) = V0, such that a particle will assume
either state with equal probability Pi(L) = Pi(R) = 1

2 .
If we want to control the particle to stay in state L, for
example, we can create the new potentials Vf (L) = Vi(L) and
Vf (R) = Vi(R)+∆V with ∆V ≥ 0 so that we obtain the new
state probabilities Pf (L) = 1

1+e−
1
α

∆V
and Pf (R) = 1

1+e
1
α

∆V
.

The work required for the state transition from i to f is given
by the free utility difference that has the limit −α log 2 for
∆V → ∞ (a potential wall), as we gain at most 1 bit of
information, whose equivalent we have to pay as work.

2) Precision Limits of Optimization: Consider the simple
optimization problem of finding the maximum of the utility
U(x) = − 1

2 (x − x̄)2. Obviously, the optimal answer is
P(x) = δ(x−x̄). However, imagine that we want to implement
this decision-making process in a physical system given by
a particle in a potential Vi(x) = − 1

2 (x − x̄)2 with the
equilibrium distribution Pi(x) = 1

Zi
exp

(− 1
2α (x− x̄)2

)
. As

a consequence, we can measure x only with variance α. If we
want to have a more precise measurement at this temperature,
say Pf (x) = 1

Z exp
(− 1

2αk(x− x̄)2
)

with k ≥ 1, then we
could add the potential V∗(x) = − 1

2 (k − 1)(x − x̄)2 and
measure the new equilibrium distribution Pf . The difference

in free utility between these two distributions is given by
Jf − Ji = −α

2 log k. We can see that this log term arises
from information costs when we set V ∗(x) = 0, that means
we only consider fluctuations of the gas. As was the case
for the ideal gas example of Section II-A, the free utility
difference in fluctuating systems is exclusively given by the
information cost. If the gas was to assume the distribution
Pf (x) = 1

Z exp
(− 1

2αk(x− x̄)2
)

with k ≥ 1 just by chance
through random fluctuations, the free utility difference be-
tween this non-equilibrium distribution Pf and the equilibrium
Pi is given by the relative entropy

−α

∫
dxPf (x) log

Pf (x)
Pi(x)

=
α

2

(
−1

k
+ 1− log k

)
.

Thus, the term −α
2 log k < 0 arises essentially as an in-

formation cost that implies that we have to spend work to
get more information so we can increase precision. In fact,
infinite precision would require infinite amount of work or
energy resources as −α

2 log k → −∞ for k → ∞. The
mathematically obvious solution P(x) = δ(x − x̄) therefore
turns out to be rather expensive. The only way to get a cheaper
result, is by finding a physical process with low conversion
factor α, as limα→0 Pf (x) = δ(x − x̄). However, according
to the third law of thermodynamics the limit α = 0 cannot be
achieved, and therefore infinite precision required by perfect
rationality remains elusive in real systems.

3) One-Step Control: Assume we are given a system with
initial state x0 and can exert a control command u which is
added to x0 to achieve the final state x = x0 + u. The target
utility is U(x) = − 1

2kx2, that is we want to control x to
be close to zero. Furthermore, let the initial control policy be
given by P0(u) = N (0, σ2). Our aim is to find the bounded
rational controller P(u). According to the variational principle
(5), we can express P(u) ∝ P0(u)e−

1
α

k
2 (x0+u)2 , which results

in the Gaussian distribution

P(u) =
1
Z

exp

(
−1

2

(
k

α
+

1
σ2

)(
u +

x0

1 + α
kσ2

)2
)

.

In the limit of perfect rationality α → 0, the controller
becomes deterministic P(u) = δ(u + x0). Note that the same
variational problem could have been formulated directly in
x-space, since there is a direct mapping between x and u.
The initial distribution is then P0(x) = N (x0, σ

2), and the
bounded rational solution is

P(x) =
1
Z

exp


−1

2

(
k

α
+

1
σ2

) (
x− x0

1 + kσ2

α

)2

 .

Both solutions are of course equivalent, as P(u) can be
retrieved from P(x) by substituting x with u + x0. It should
be emphasized, however, that in both cases we should think
about the stochasticity as arising from the control process,
rather than assuming a classical deterministic controller with
state noise.



4) One-Step Control with Constant Variance: In the previ-
ous example both mean and variance changed in the trans-
formation from P0(u) to P(u). Here we want to change
only the mean < u >, and keep the variance V ar(u) = σ2

the same. We can incorporate this additional constraint into
the variational principle (5) by directly assuming the form
P(u) = N (µ, σ2) for Pf . We then insert P(u) into the
variational functional (5) and get a parametric optimization
problem in µ:

µ∗ = arg max
µ

{
−

∫
du

1√
2πσ2

e−
1
2

(u−µ)2

σ2
1
2
k(x0 + u)2

− α

∫
du

1√
2πσ2

e−
1
2

(u−µ)2

σ2 log
1√

2πσ2 e−
1
2

(u−µ)2

σ2

1√
2πσ2 e−

1
2

u2

σ2

}

Consequently, we have

µ∗ = arg min
µ

{
1
2
k

(
σ2 + (µ + x0)2

)
+ α

µ2

2σ2

}

which results in µ∗ = − x0
1+ α

kσ2
. The result is identical to the

mean < u >=
∫

duP(u)u obtained in the previous example.
Similarly, the mean control signal < u > can also be obtained
from P(x) as < u >=

∫
dxP(x)u(x), where u(x) = x− x0.

Since u(x) is linear in x0, another way to retrieve the same
result is by taking the derivative of the log partition sum with
respect to x0. To this end, we note that Z =

∫
dxe−

1
α S(x),

with S(x) = 1
2α (x−x0)

2

σ2 + 1
2kx2 and

∂

∂x0
log Z = − 1

αZ

∫
dxe−

1
α S(x) ∂S

∂x0
.

The derivative of S(x) with respect to the initial state x0 is
∂S
∂x0

= −αu(x)
σ2 . Consequently, we can write the log partition

sum as an expectation in u(x)

∂

∂x0
log Z =

1
σ2

∫
dxu(x)P(x) =

< u >

σ2

with P(x) = e−
1
α

S(x)∫
dx′e−

1
α

S(x′) . We will use a similar line of

thought later for the path integrals.

III. PATH INTEGRAL CONTROL

A. Variational Principle for Paths

In the case of space- and time-continuous control, the
objects of decision-making are system trajectories or paths
x made up of trajectory points x(t) with t0 ≤ t ≤ T . The
utility of paths is given by functionals U[x]. Similarly, the
probability distributions P[x] become functionals over paths.
The variational principle is then formulated over paths as well.
We are looking for the distribution P[x] that maximizes the
functional ∫

DxP[x]U[x]− α

∫
DxP[x] log

P[x]
P0[x]

, (6)

where P0[x] corresponds to an initially given distribution. The
integrals are to be understood as path integrals. As discussed

in the previous section, the solution to this variational problem
is given by

P[x] ∝ P0[x] exp
(

1
α
U[x]

)
. (7)

In the following we will assume that the path cost can be
obtained by summing up an instantaneous utility and a final
utility, that is

U[x] := −
∫ T

t0

dtq(x(t), t)− α log ψ(x(T )).

The normalization factor in (7) is then given by the path
integral

Ψ =
∫

DxP0[x]e
− 1

α

∫
dtq(x(t),t)ψ(x(T )). (8)

If the initial distribution P0[x] is given by a diffusion process
dx = µ(x, t)dt+

√
ασ(x, t)dw, then we can write the partition

sum Z as the path integral

Z =
∫

Dxe
− 1

α

∫
dt

(
(ẋ−µ(x,t))2

2σ2(x,t)
+q(x(t),t)

)
ψ(x(T )).

In fact the partition sum can be formulated for any starting
position x(t1) of the path xt1:T with t0 ≤ t1 ≤ T as

Z(x(t1), t1) =
∫

Dxt1:T e
− 1

α

∫ T

t1
dt

(
(ẋ−µ(x,t))2

2σ2(x,t)
+q(x(t),t)

)
ψ(x(T )).

We will need the partition sum in the following when com-
puting expectation values of the bounded rational controller.

B. Problem Formulation

The optimal control problem addressed by the path integral
formalism has the following state dynamics

ẋ = f(x, t) + g(x)u,

utility function
U(x, t) = −q(x, t),

and terminal cost

φ(x(T )) = α log(ψ(x(T ))),

where x is the state vector, f the nonlinear state transition
function, g the control gain, u the control signal, q the state
cost, and T the time horizon.

For reasons of mathematical tractability, we will restrict our
admissible controllers to the set of diffusion processes of the
form du = µ(x, t)dt+

√
ασdw with known diffusion constant√

ασ, but unknown drift µ. We can then use the partition
sum to compute the drift as the expectation over all possible
controls (see example above). Since there is a linear mapping
between u and x, we also have a diffusion in x given by
dx = f(x, t)dt+ g(x)du, where the dynamics f play the role
of a baseline drift and du is a diffusion process with drift µ
and diffusion

√
ασ. In total, we then get the diffusion process

dx =
(
f(x, t) + g(x)µ(x, t)

)
dt +

√
ασg(x)dw (9)



with drift f(x, t) + g(x)µ(x, t) and a state-dependent diffu-
sion constant

√
ασg(x). Thus, the bounded rational control

problem consists of finding the optimal drift µ of a stochastic
controller realized by a diffusion process.

C. Mean Controls
As discussed in the previous example, we can use the

partition sum to compute the mean drift in controls. If we
discretize the trajectories x into N equidistant points x(tj)
with j = 1, . . . , N , we can write the partition sum Z(x, ti) as

Z(x, ti) = lim
∆t→0

∫
Dxti:T exp

(
− 1

α
S[xti:T ]

)

with ∆t = T
N and

S[xti:T ] = φ(x(T )) +
N−1∑

j=i

q(xtj
)∆t

+
1
2

N−1∑

j=i

(
xtj+1−xtj

∆t − ftj

)2

gtj
σ2gtj

.

The derivative of the log partition sum with respect to the
initial state xti is then given by

∇xti
log Z = lim

∆t→0
− 1

α

∫
Dxti:T P[xti:T ]∇xti

S[xti:T ]

with

P[xti:T ] =
exp

(− 1
αS[xti:T ]

)
∫

Dxti:T exp
(− 1

αS[xti:T ]
)

and

∇xti
S[xti:T ] = − 1

2∆t
ζti −

1
2
βti∇xti

fti +
1

2∆t
βti∇xti

ζti

with

βti = xti+1 − xti − fti∆t

ζti =
βti

gtiσ
2gti

.

If we take the limit ∆t → 0 of ∇xti
S[xti:T ] we find

lim
∆t→0

∇xti
S[xti:T ] = − lim∆t→0

xti+1−xti

∆t − fti

gtiσ
2gti

.

We realize, that we can express this in terms of the control
u(xti+1 , xti) as

lim
∆t→0

∇xti
S[xti:T ] = −u(xti+1 , xti)

σ2gti

.

Consequently, we can express the derivative of the log partition
sum as an expectation value over the controls

∇xt log Z =
1

ασ2g(x)

∫
P[xt:T ]u[xt:T ],

where u[xt:T ] is the control trajectory associated with the state
path xt:T . Finally, we can express the mean controls in terms
of the log partition sum

< ut >= σ2g(x)α ∇xt log Z.

Thus, the bounded rational controller has mean drift < ut >
and variance ασ2.

D. Connection to Hamilton-Jacobi-Bellman equation

As outlined above, the perfectly rational limit of the
bounded rational controller can be obtained for α → 0. In
the present case, this leads to diverging controls as there are
no control costs in the problem statement and therefore the
best strategy is to apply infinite control. However, there is also
another way to link the above framework to traditional optimal
control based on the Hamilton-Jacobi-Bellman equation. To
this end, we realize that the normalization factor of (8) can be
written as a partial differential equation if P0[x] is given by a
diffusion process. In the case of the above problem statement,
the diffusion process of the initial controller is given by (9)
with µ = 0. Following the Feynman-Kac formula, we then
realize that the path integral for Ψ(x, t) can be expressed as
the partial differential equation:

∂Ψ
∂t

+ f(x, t)
∂Ψ
∂x

+
1
2
g(x)σ2g(x)

∂2Ψ
∂x2

= q(x, t)Ψ

with the boundary condition Ψ(x, T ) = ψ(x(T )). Dividing by
Ψ and introducing the transform

V = −α log Ψ

one notes that
∂Ψ
∂t

1
Ψ

= − 1
α

∂V

∂t
∂Ψ
∂x

1
Ψ

= − 1
α

∂V

∂x
∂2Ψ
∂x2

1
Ψ

= − 1
α

∂2V

∂x2
+

1
α2

(∂V

∂x

)2

.

This leads to the new partial differential equation

−∂V

∂t
= q(x, t) + f(x, t)

∂V

∂x
+

1
2
g2(x, t)σ2 ∂2V

∂x2

− 1
α

1
2
g2(x, t)σ2

(∂V

∂x

)2

(10)

This differential equation can be compared to the Hamilton-
Jacobi-Bellman equation for the same system with control
costs c(x, u) = q(x) + 1

2uRu. The Hamilton-Jacobi-Bellman
equation is then given by

−∂V

∂t
= min

u

(
q(x, t) +

1
2
uRu + f(x, t)

∂V

∂x

+
1
2
g2(x, t)σ2 ∂2V

∂x2

)

Since the left hand side is quadratic in u, we can solve the
minimization problem analytically by

u(xt) = −R−1g(x)∇xV (x, t).

The Hamilton-Jacobi-Bellman equation then becomes a diffu-
sion equation similar to (10)

−∂V

∂t
= q(x, t) + f(x, t)

∂V

∂x
+

1
2
g2(x, t)σ2 ∂2V

∂x2

− 1
2
g(x, t)R−1g(x, t)

(∂V

∂x

)2

. (11)



The two equations (11) and (10) are in fact identical if we
require that

σ2

α
= R−1.

This requirement implies that we interpret the “information
costs” of the bounded rational controller as a “control cost”.
Mathematically, this interpretation works out for quadratic
control cost functions and Gaussian control distributions,
because the information cost between different Gaussian con-
trollers with different means but same variance turns out to be
quadratic. As outlined above information costs are measured
by the relative entropy between initial and desired controls
P0(u) and P(u). If these two distributions are Gaussian with
the same variance and means µ1 = µ and µ2 = 0 respectively,
then the information cost is

α

∫
duP(u) log

P(u)
P0(u)

=
1
2
α

µ2

σ2
.

Thus, the relationship σ2

α = R−1 implies that the information
cost is interpreted as a control cost.

IV. DISCRETE CONTROL

In the following we show that the same principles can be
carried over to discrete control. The variational principle is
then formulated over sequences of random variables x1:T =
x1x2 . . . xT , where T is the time horizon. The utility of these
sequences is given by a function U(x1:T ). We are looking for
the distribution P(x1:T ) that maximizes the functional

∑
x1:T

P(x1:T )U(x1:T )− α
∑
x1:T

P(x1:T ) log
P(x1:T )
P0(x1:T )

,

where P0(x1:T ) corresponds again to an initially given dis-
tribution, which includes the uniform as a special case. As
previously, the solution is given by

P(x1:T ) ∝ P0(x1:T ) exp
(

1
α
U(x1:T )

)
.

In the following we will assume that we are dealing with
Markov systems

P(x1:T ) =
T∏

i=1

P (xi|xi−1)

P0(x1:T ) =
T∏

i=1

P0(xi|xi−1)

and that the utilities are given by costs that are additive and
state-dependent

U(x1:T ) = −
T∑

i=1

q(xi).

The variational principle can then be written in the following
recursive form

∑
x1

P (x1)

[
− q(x1)− α log

P (x1)
P0(x1)

+
∑
x2

P (x2|x1)

[
− q(x2)− α log

P (x2|x1)
P0(x2|x1)

+ . . .

+
∑
xT

P (xT |xT−1)

[
− q(xT )− α log

P (xT |xT−1)
P0(xT |xT−1)

]
. . .

]
.

Consequently, the innermost variational problem can be
solved independently of the other ones, resulting in

P (xT |xT−1) =
1

ΨT
P0(xT |xT−1)e−

1
α q(xT ),

where ΨT is the normalization factor that is a function of
xT−1. If we re-insert this solution into the above maximization
problem, we can then solve the variational problem for xT−1,
which results in

P (xT−1|xT−2) =
1

ΨT−1
P0(xT−1|xT−2)e−

1
α q(xT−1)+log ΨT .

We can proceed likewise for all the other probabilities until
we reach P (x1). This procedure also imposes a recursive
relationship between the normalization factors

Ψt =
∑
xt

P0(xt|xt−1)e−
1
α q(xt)Ψt+1. (12)

Iterating these recursive equations in Ψ fully determines the
probabilities P (xt|xt−1) for all t and therefore solves the
optimization problem.

Instead of iterating Ψt we can also define the quantity zT =
exp(− 1

αq(xT )) and zT−1 = exp(− 1
αq(xT−1) + log ΨT ) and

so forth, to get the recursion

zt−1 = e−
1
α q(xt−1)

∑
xt

P0(xt|xt−1)zt

These z-values can be used to obtain the final probabilities
through

P (xt|xt−1) =
P0(xt|xt−1)zt∑
xt

P0(xt|xt−1)zt
.

This z-iteration was suggested in [16] to solve MDPs. Since
we deal with Markov systems, both recursions can also be for-
mulated in matrix form, which allows solving the optimization
problem through methods of linear algebra.

In the perfectly rational limit α → 0 we can recover the
Bellman optimality equation from (12). Again we start with
the final time step and take the transform Vt = −α log Ψt

which results in

VT = −α log
∑
xT

P0(xT |xT−1)e−
1
α q(xT )

and the limit

V ∗
T = lim

α→0
VT = min

xT

q(xT ).



Analogously, we get in the preceding time step

VT−1 = −α log
∑
xT−1

P0(xT−1|xT−2)e−
1
α (q(xT−1)+VT )

with the limit

V ∗
T−1 = lim

α→0
VT−1 = min

xT−1
(q(xT−1) + V ∗

T ) .

Thus, we retrieve from (12) the general Bellman recursion

V ∗
t = min

xt

(
q(xt) + V ∗

t+1

)

in the perfectly rational limit α → 0. Accordingly, the
perfectly rational action probabilities are given by

P (xt|xt−1) = δ(xt − x∗t )

with
x∗t = arg min

xt

(
q(xt) + V ∗

t+1

)

and the boundary condition x∗T = arg minxT q(xT ).

V. ITERATIVE CONTROL

Bounded rational controllers have also an interesting in-
terpretation when used for iterative control. In particular, the
path integral approach has recently been extended for iterative
control [15]. Consider a static control problem with initial
control P0(x) and control cost q(x). The bounded rational
controller at temperature α is then given as

P(x) =
P0(x)e−

1
α q(x)

∫
dx′P0(x′)e−

1
α q(x′)

.

This expression looks very much like an inference step in
Bayesian inference, where we identify the prior P0(x), the
likelihood model e−

1
α q(x) and the posterior P(x), normalized

by the partition function. If we now use the posterior control
of one iteration as the prior of the next iteration, we get
something that is very similar to Bayesian inference, where
each x corresponds to a hypothesis. Over the subsequent
iterations the hypotheses x compete for probability mass,
where the x that have a lower-than-average cost are favored. A
similar Bayesian rule has been recently proposed for adaptive
control in [10], where different control modes compete for
expression.

VI. CONCLUSION

In the present paper we have proposed a physically inspired
notion of bounded rationality as a unifying framework for
a number of recently published approximate optimal control
methods in the continuous [6], [7], [15] and the discrete
domain [16]. The proposed bounded rational controllers max-
imize a free utility functional and implicitly trade-off desired
utilities against required resource costs. The resource costs
are interpreted as information costs in physically embedded
systems, since changing physically implemented information
states comes with a thermodynamic cost measured in energy
units. This change in information state is always measured
with respect to an initial baseline policy, which includes

the special case of a baseline policy that attributes equal
probability mass to all possible actions. Thus, bounded rational
controllers are in general stochastic. In the limit of negligible
information costs the classical expected utility principle can be
recovered, which includes classical stochastic optimal control
as a special case.

We could show that the path integral formalism [6] and a
recently published approximate optimal control method in the
discrete domain [16] can be conceptualized as bounded ratio-
nal controllers. Importantly, these controllers can be derived
from a free utility principle without invoking the Hamilton-
Jacobi-Bellman equation or the Bellman optimality equations
in the discrete case.

Previously, the path integral control formalism has been de-
rived from the Hamilton-Jacobi-Bellman equation. One of the
important steps in the path integral control framework is the
transformation of the Hamilton-Jacobi-Bellman equation into
a linear and second order partial differential equation (which
is equivalent to the backward Kolmogorov partial differential
equation), via the use of 1) a logarithmic transformation of the
value function and 2) the assumption that the variance of the
noise scales with the control cost. Even though the connection
between the control cost and the noise makes sense from a
control theoretic point of view, by allowing control authority
in cases of high variance, this assumption is imposed so that
the Hamilton-Jacobi-Bellman equation can be linearized.

In contrast, the relation between noise and control cost falls
out naturally in our derivation. Thus, the path integral control
formalism can be interpreted as bounded rational control,
where the “control cost” is equated with the “information cost”
of the bounded rational controller. The result is a stochastic
controller that controls a deterministic system, which also
explains why the noise in the path integral formalism has to
be in the control space. Such stochastic controllers are not
optimal in the traditional sense of optimal control, but require
new optimality principles that allow for stochastic control. The
suggested framework of bounded rationality provides such an
optimality principle.
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