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Abstract

Rewards typically express desirabilities or preferences
over a set of alternatives. Here we propose that rewards
can be defined for any probability distribution based on
three desiderata, namely that rewards should be real-
valued, additive and order-preserving, where the lat-
ter implies that more probable events should also be
more desirable. Our main result states that rewards
are then uniquely determined by the negative infor-
mation content. To analyze stochastic processes, we
define the utility of a realization as its reward rate.
Under this interpretation, we show that the expected
utility of a stochastic process is its negative entropy
rate. Furthermore, we apply our results to analyze
agent-environment interactions. We show that the ex-
pected utility that will actually be achieved by the
agent is given by the negative cross-entropy from the
input-output (I/O) distribution of the coupled inter-
action system and the agent’s I/O distribution. Thus,
our results allow for an information-theoretic interpre-
tation of the notion of utility and the characterization
of agent-environment interactions in terms of entropy
dynamics.
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Introduction
Purposeful behavior typically occurs when an agent ex-
hibits specific preferences over different states of the
environment. Mathematically, these preferences can be
formalized by the concept of a utility function that as-
signs a numerical value to each possible state such that
states with higher utility correspond to states that are
more desirable [Fishburn, 1982]. Behavior can then be
understood as the attempt to increase one’s utility. Ac-
cordingly, utility functions can be measured experimen-
tally by observing an agent choosing between different
options, as this way its preferences are revealed. Math-
ematical models of rational agency that are based on
the notion of utility have been widely applied in be-
havioral economics, biology and artificial intelligence
research [Russell and Norvig, 1995]. Typically, such ra-
tional agent models assume a distinct reward signal (or
cost) that an agent is explicitly trying to optimize.

However, as an observer we might even attribute pur-
posefulness to a system that does not have an explicit

reward signal, because the dynamics of the system it-
self reveal a preference structure, namely the preference
over all possible paths through history. Since in most
systems not all of the histories are equally likely, we
might say that some histories are more probable than
others because they are more desirable from the point
of view of the system. Similarly, if we regard all possible
interactions between a system and its environment, the
behavior of the system can be conceived as a drive to
generate desirable histories. This imposes a conceptual
link between the probability of a history happening and
the desirability of that history. In terms of agent de-
sign, the intuitive rationale is that agents should act in a
way such that more desired histories are more probable.
The same holds of course for the environment. Conse-
quently, a competition arises between the agent and the
environment, where both participants try to drive the
dynamics of their interactions to their respective de-
sired histories. In the following we want to show that
this competition can be quantitatively assessed based
on the entropy dynamics that govern the interactions
between agent and environment.

Preliminaries

We introduce the following notation. A set is denoted
by a calligraphic letter like X and consists of elements
or symbols. Strings are finite concatenations of symbols
and sequences are infinite concatenations. The empty
string is denoted by ǫ. Xn denotes the set of strings
of length n based on X , and X ∗ ≡

⋃

n≥0 X
n is the set

of finite strings. Furthermore, X∞ ≡ {x1x2 . . . |xi ∈
X for all i = 1, 2, . . .} is defined as the set of one-way
infinite sequences based on X . For substrings, the fol-
lowing shorthand notation is used: a string that runs
from index i to k is written as xi:k ≡ xixi+1 . . . xk−1xk.
Similarly, x≤i ≡ x1x2 . . . xi is a string starting from the
first index. By convention, xi:j ≡ ǫ if i > j. All proofs
can be found in the appendix.

Rewards

In order to derive utility functions for stochastic pro-
cesses over finite alphabets, we construct a utility func-
tion from an auxiliary function that measures the de-



sirability of events, i.e. such that we can assign de-
sirability values to every finite interval in a realization
of the process. We call this auxiliary function the re-
ward function. We impose three desiderata on a reward
function. First, we want rewards to be mappings from
events to reals numbers that indicate the degree of de-
sirability of the events. Second, the reward of a joint
event should be obtained by summing up the reward
of the sub-events. For example, the “reward of drink-
ing coffee and eating a croissant” should equal “the re-
ward of drinking coffee” plus the “reward of having a
croissant given the reward of drinking coffee”1. This is
the additivity requirement of the reward function. The
last requirement that we impose for the reward function
should capture the intuition suggested in the introduc-
tion, namely that more desirable events should also be
more probable events given the expectations of the sys-
tem. This is the consistency requirement.

We start out from a probability space (Ω,F ,Pr),
where Ω is the sample space, F is a dense σ-algebra
and Pr is a probability measure over F . In this sec-
tion, we use lowercase letters like x, y, z to denote the
elements of the σ-algebra F . Given a set X , its comple-
ment is denote by complement X ∁ and its powerset by
P(X ). The three desiderata can then be summarized
as follows:

Definition 1 (Reward). Let S = (Ω,F ,Pr) be a prob-
ability space. A function r is a reward function for S
iff it has the following three properties:

1. Real-valued: for all x, y ∈ F ,

r(x|y) ∈ R;

2. Additivity: for all x, y, z ∈ F ,

r(x, y|z) = r(x|z) + r(y|x, z);

3. Consistent: for all x, y, u, v ∈ F ,

Pr(x|u) > Pr(y|v) ⇐⇒ r(x|u) > r(y|v).

Furthermore, the unconditional reward is defined as
r(x) ≡ r(x|Ω) for all x ∈ F .

The following theorem shows that these three
desiderata enforce a strict mapping rewards and prob-
abilities. The only function that can express such a
relationship is the logarithm.

Theorem 1. Let S = (Ω,F ,Pr) be a probability space.
Then, a function r is a reward function for S iff for all
x, y ∈ F

r(x|y) = k logPr(x|y),

where k > 0 is an arbitrary constant.

Notice that the constant k in the expression r(x|y) =
k logPr(x|y) merely determines the units in which we
choose to measure rewards. Thus, the reward function

1Note that the additivity property does not imply that
the reward for two coffees is simply twice the reward for one
coffee, as the reward for the second coffee will be conditioned
on having had a first coffee already.

r for a probability space (Ω,F ,Pr) is essentially unique.
As a convention, we will assume natural logarithms and
set the constant to k = 1, i.e. r(x|y) = lnPr(x|y).

This result establishes a connection to information
theory. It is immediately clear that the reward of an
event is nothing more than its negative information con-
tent: the quantity h(x) = −r(x) is the Shannon infor-
mation content of x ∈ F measured in nats [MacKay,
2003]. This means that we can interpret rewards as
“negative surprise values”, and that “surprise values”
constitute losses.

Proposition 1. Let r be a reward function over a prob-
ability space (Ω,F ,Pr). Then, it has the following prop-
erties:

i. Let x, y ∈ F . Then

−∞ = r(∅) ≤ r(x|y) ≤ r(Ω) = 0.

ii. Let x ∈ F be an event. Then,

er(x∁) = 1 − er(x).

iii. Let z1, z2, . . . ∈ F be a sequence of disjoint events
with rewards r(z1), r(z2), . . . and let x =

⋃

i zi. Then

er(x) =
∑

i

er(zi).

The proof of this proposition is trivial and left to the
reader. The first part sets the bounds for the values of
rewards, and the two latter explain how to construct
the rewards of events from known rewards using com-
plement and countable union of disjoint events.

At a first glance, the fact that rewards take on com-
plicated non-positive values might seem unnatural, as
in many applications one would like to use numerical
values drawn from arbitrary real intervals. Fortunately,
given numerical values representing the desirabilities of
events, there is always an affine transformation that
converts them into rewards.

Theorem 2. Let Ω be a countable set, and let d : Ω →
(−∞, a] be a mapping. Then, for every α > 0, there is
a probability space (Ω, P(Ω),Pr) with reward function
r such that:

1. for all ω ∈ Ω,

r({ω}) ≡ αd(ω) + β,

where β ≡ − ln
(

∑

ω′∈Ω eαd(ω′)
)

;

2. and for all ω, ω′ ∈ Ω,

d(ω) > d(ω′) ⇔ r({ω}) > r({ω′}).

Note that Theorem 2 implies that the probability
Pr(x) of any event x in the σ-algebra P(Ω) generated
by Ω is given by

Pr(x) =

∑

ω∈x eαd(ω)

∑

ω∈Ω eαd(ω)
.

Note that for singletons {ω}, Pr({ω}) is the Gibbs mea-
sure with negative energy d(ω) and temperature ∝ 1

α
.

It is due to this analogy that we call the quantity 1
α

> 0
the temperature parameter of the transformation.



Utilities in Stochastic Processes
In this section, we consider a stochastic process Pr over
sequences x1x2x3 · · · in X∞. We specify the process
by assigning conditional probabilities Pr(xt|x<t) to all
finite strings x≤t ∈ X ∗. Note that the distribution

Pr(x≤t) =
∏t

τ=1 Pr(xτ |x<τ ) for all x≤t ∈ X ∗ is nor-
malized by construction. By the Kolmogorov exten-
sion theorem, it is guaranteed that there exists a unique
probability space S = (X∞,F ,Pr). We therefore omit
the reference to S and talk about the process Pr.

The reward function r derived in the previous section
correctly expresses preference relations amongst differ-
ent outcomes. However, in the context of random se-
quences, it has the downside that the reward of most
sequences diverges. A sequence x1x2x3 · · · can be inter-
preted as a progressive refinement of a point event in F ,
namely, the sequence of events ǫ ⊃ x≤1 ⊃ x≤2 ⊃ x≤3 ⊃
· · · . One can exploit the interpretation of the index as
time to define a quantity that does not diverge. We
define thus the utility as the reward rate of a sequence.

Definition 2 (Utility). Let r be a reward function for
the process Pr. The utility of a string x≤t ∈ X ∗ is
defined as

U(x≤t) ≡
1

t

t
∑

τ=1

r(xτ |x<τ ),

and for a sequence x = x1x2x3 · · · ∈ X∞ it is defined
as

U(x) ≡ lim
t→∞

U(x≤t)

if this limit exists2.

A utility function that is constructed according to
Definition 2 has the following properties.

Proposition 2. Let U be a utility function for a pro-
cess Pr. The following properties hold:

i. For all x = x1x2 · · · ∈ X∞ and all t, k ∈ N,

−∞ = U(λ) ≤ U(x≤t) ≤ U(ǫ) = 0,

where λ is any impossible string/sequence.

ii. For all x≤t ∈ X ∗,

Pr(x≤t) = exp
(

t ·U(x≤t)
)

.

iii. For any t ∈ N,

E[U(x≤t)] = −
1

t
H[Pr(x≤t)],

where H is the entropy functional (see the appendix).

Part (i) provides trivial bounds on the utilities
that directly carry over from the bounds on rewards.
Part (ii) shows how the utility of a sequence determines
its probability. Part (iii) implies that the expected util-
ity of an interaction sequence is just its negative entropy
rate.

2Strictly speaking, one could define the upper and
lower rate U+(x) ≡ lim supt→∞ U(x≤t) and U−(x) ≡
lim inft→∞ U(x≤t) respectively, but we avoid this distinc-
tion for simplicity.

Utility in Coupled I/O systems
Let O and A be two finite sets, the first being the
set of observations and the second being the set of
actions. Using A and O, a set of interaction se-
quences is constructed. Define the set of interactions
as Z ≡ A × O. A pair (a, o) ∈ Z is called an interac-
tion. We underline symbols to glue them together as in
ao≤t = a1o1a2o2 · · ·atot.

An I/O system Pr is a probability distribution over
interaction sequences Z∞. Pr is uniquely determined
by the conditional probabilities

Pr(at|ao<t), Pr(ot|ao<tat)

for each ao≤t ∈ Z∗. However, the semantics of the
probability distribution Pr are only fully defined once it
is coupled to another system. Note that an I/O system
is formally equivalent to a stochastic process; hence one
can construct a reward function r for Pr.

Let P, Q be two I/O systems. An interaction sys-
tem (P,Q) defines a generative distribution G that de-
scribes the probabilities that actually govern the I/O
stream once the two systems are coupled. G is speci-
fied by the equations

G(at|ao<t) = P(at|ao<t)

G(ot|ao<tat) = Q(ot|ao<tat)

valid for all aot ∈ Z∗. Here, G is a stochastic pro-
cess over Z∞ that models the true probability distri-
bution over interaction sequences that arises by cou-
pling two systems through their I/O streams. More
specifically, for the system P, P(at|ao<t) is the proba-
bility of producing action at ∈ A given history ao<t and
P(ot|ao<tat) is the predicted probability of the obser-
vation ot ∈ O given history ao<tat. Hence, for P, the
sequence o1o2 . . . is its input stream and the sequence
a1a2 . . . is its output stream. In contrast, the roles of
actions and observations are reversed in the case of the
system Q. This model of interaction is very general
in that it can accommodate many specific regimes of
interaction. By convention, we call the system P the
agent and the system Q the environment.

In the following we are interested in understanding
the actual utilities that can be achieved by an agent P
once coupled to a particular environment Q. Accord-
ingly, we will compute expectations over functions of
interaction sequences with respect to G, since the gen-
erative distribution G describes the actual interaction
statistics of the two coupled I/O systems.

Theorem 3. Let (P,Q) be an interaction system. The
expected rewards of G, P and Q for the first t interac-
tions are given by

E[rG(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)],

E[rP(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

− KL[Q(o≤t|a≤t)‖P(o≤t|a≤t)],

E[rQ(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

− KL[P(a≤t|o<t)‖Q(a≤t|o<t)],



where rG, rP and rQ are the reward functions for G,
P and Q respectively. Note that H and KL are the
entropy and the relative entropy functionals as defined
in the appendix.

Accordingly, the interaction system’s expected re-
ward is given by the negative sum of the entropies pro-
duced by the agent’s action generation probabilities and
the environment’s observation generation probabilities.
The agent’s (actual) expected reward is given by the
negative cross-entropy between the generative distribu-
tion G and the agent’s distribution P. The discrepancy
between the agent’s and the interaction system’s ex-
pected reward is given by the relative entropy between
the two probability distributions. Since the relative en-
tropy is positive, one has E[rG(ao≤t)] ≥ E[rP(ao≤t)].
This term implies that the better the environment is
“modeled” by the agent, the better its performance will
be. In other words: the agent has to recognize the
structure of the environment to be able to exploit it.
The designer can directly increase the agent’s expected
performance by controlling the first and the last term.
The middle term is determined by the environment and
only indirectly controllable. Importantly, the terms are
in general coupled and not independent: changing one
might affect another. For example, the first term sug-
gests that less stochastic policies improve performance,
which is oftentimes the case. However, in the case of a
game with mixed Nash equilibria the overall reward can
increase for a stochastic policy, which means that the
first term is compensated for by the third term. Given
the expected rewards, we can easily calculate the ex-
pected utilities in terms of entropy rates.

Corollary 1. Let (P,Q) be an interaction system. The
expected utilities of G, P and Q are given by

E[UG] = GUP + GUQ

E[UP] = GUP + GUQ + PUP

E[UQ] = GUP + GUQ + PUQ

where GUP, GUQ and PUP are entropy rates defined
as

GUP ≡ −
1

t

t
∑

τ=1

H[P(aτ |ao
<τ

)]

PUP ≡ −
1

t

t
∑

τ=1

KL[Q(oτ |ao
<τ

aτ )‖P(oτ |ao
<τ

aτ )]

GUQ ≡ −
1

t

t
∑

τ=1

H[Q(oτ |ao
<τ

aτ )]

PUQ ≡ −
1

t

t
∑

τ=1

KL[P(aτ |ao
<τ

)‖Q(aτ |ao
<τ

)].

This result is easily obtained by dividing the quanti-
ties in Theorem 3 by t and then applying the chain rule
for entropies to break the rewards over full sequences
into instantaneous rewards. Note that GUP, GUQ are
the contributions to the utility due the generation of
interactions, and PUP, PUQ are the contributions to
the utility due to the prediction of interactions.

Examples

One of the most interesting aspects of the information-
theoretic formulation of utility is that it can be applied
both to control problems (where an agent acts in a non-
adaptive environment) and to game theoretic problems
(where two possibly adaptive agents interact). In the
following we apply the proposed utility measures to two
simple toy examples from these two areas. In the first
example, an adaptive agent interacts with a biased coin
(the non-adaptive agent) and tries to predict the next
outcome of the coin toss, which is either ‘Head’ (H) or
‘Tail’ (T). In the second example two adaptive agents
interact playing the matching pennies game. One player
has to match her action with the other player (HH or
TT), while the other player has to unmatch (TH or
HT). All agents have the same sets of possible observa-
tions and actions which are the binary sets O = {H, T}
and A = {H, T}.

Example 1. The non-adaptive agent is a biased coin.
Accordingly, the coin’s action probability is given by
its bias and was set to Q(o = H) = 0.9. The coin
does not have any biased expectations about its obser-
vations, so we set Q(a = H) = 0.5. The adaptive agent
is given by the Laplace agent whose expectations over
observed coin tosses follows the predictive distribution
P(o = H|t, n) = (n + 1)/(t + 2), where t is the number
of coin tosses observed so far and n is the number of
observed Heads. Based on this estimator the Laplace
agent chooses its action deterministically according to
P(a = H|t, n) = Θ(n+1

t+2 −
1
2 ), where Θ(·) is the Heaviside

step function. From these distributions the full proba-
bility over interaction sequences can be computed. Fig-
ure 1A shows the entropy dynamics for a typical single
run. The Laplace agent learns the distribution of the
coin tosses, i.e. the KL decreases to zero. The negative
cross-entropy stabilizes at the value of the observation
entropy that cannot be further reduced. The entropy
dynamics of the coin do not show any modulation.

Example 2. The two agents are modeled based on
smooth fictitious play [Fudenberg and Kreps, 1993].
Both players keep count of the empirical frequencies
of Head and Tail respectively. Therefore, each player i

stores the quantities κ
(1)
i = ni and κ

(2)
i = t−ni where t

is the number of moves observed so far, n1 is the number
of Heads observed by Player 1 and n2 is the number of
Heads observed by Player 2. The probability distribu-
tions P(o = H|t, n1) = γ1 and Q(a = H|t, n2) = γ2 over
inputs is given by these empirical frequencies through
γi = κi/

∑

i κi. The action probabilities are com-
puted according to a sigmoid best-response function
P(a = H|t, n1) = 1/(1 + exp(−α(γ1 − 0.5))), and
Q(o = H|t, n2) = 1/(1 + exp(−α(0.5 − γ2))) respec-
tively in case of Player 2 that has to unmatch. This
game has a well-known equilibrium solution that is a
mixed strategy Nash equilibrium where both players act
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Figure 1: (A) Entropy dynamics of a Laplace agent interacting with a coin of bias 0.9. The Laplace agent learns
to predict the coin’s behavior as can be seen in the decrease of the KL-divergence and the cross entropy. Since
the Laplace agent acts deterministically its action entropy is always zero. Its observation entropy equals the action
entropy of the coin. The coin does not change its behavior, which can be seen from the flat entropy curves. (B)
Entropy dynamics of two adaptive agents playing matching pennies. Both agents follow smooth fictitious play. They
converge to uniform random policies, which means that their action negentropies converge to log(2). Both agents
learn the probability distribution of the other agent, as can be seen in the decrease of the KL-divergences.

randomly. Both action and observation entropies con-
verge to the value log(2). Interestingly, the information-
theoretic utility as computed by the cross-entropy takes
the action entropy into account. Compare Figure 1B.

Conclusion

Based on three simple desiderata we propose that re-
wards can be measured in terms of information con-
tent and that, consequently, the entropy satisfies prop-
erties characteristic of a utility function. Previous the-
oretical studies have reported structural similarities be-
tween entropy and utility functions, see e.g. [Candeal
et al., 2001], and recently, relative entropy has even
been proposed as a measure of utility in control sys-
tems [Todorov, 2009, Kappen et al., 2009, Ortega and
Braun, 2008]. The contribution of this paper is to de-
rive axiomatically a precise relation between rewards
and information value and to apply it to coupled I/O
systems.

The utility functions that we have derived can be
conceptualized as path utilities, because they assign a
utility value to an entire history. This is very similar
to the path integral formulation in quantum mechan-
ics where the utility of a path is determined by the
classic action integral and the probability of a path is
also obtain by taking the exponential of this ‘utility’
[Feynman and Hibbs, 1965]. In particular, we obtain
the (cumulative time-averaged) cross entropy as a util-
ity function when an agent is coupled to an environ-
ment. This utility function not only takes into account
the KL-divergence as a measure of learning, but also
the action entropy. This is interesting, because in most
control problems controllers are designed to be deter-
ministic (e.g. optimal control theory) in response to
a known and stationary environment. If, however, the
environment is not stationary and in fact adaptive as
well, then it is a well-known result from game theory

that optimal strategies might be randomized. The util-
ity function that we are proposing might indeed allow
quantifying a trade-off between reducing the KL and
reducing the action entropy. In the future it will there-
fore be interesting to investigate this utility function in
more complex interaction systems.

Appendix

Entropy functionals

Entropy: Let Pr be a probability distribution over
X × Y . Define the (average conditional) entropy [Shan-
non, 1948] as

H[Pr(x|y)] ≡ −
∑

x,y

Pr(x, y) lnPr(x|y).

Relative Entropy: Let Pr1 and Pr2 be two probability
distributions over X × Y. Define the (average condi-
tional) relative entropy [Kullback and Leibler, 1951] as

KL[Pr1(x|y)‖Pr2(x|y)] ≡
∑

x,y

Pr1(x, y) ln
Pr1(x|y)

Pr2(x|y)
.

Proof of Theorem 1

Proof. Let the function g be such that g(Pr(x)) = r(x).
Let x1, x2, . . . , xn ∈ F be a sequence of events, such
that Pr(x1) = Pr(xi|x<i) > 0 for all i = 2, . . . , n.
We have Pr(x1, . . . , xn) =

∏

i Pr(xi|x<i) = Pr(x1)
n.

Since Pr(x) > Pr(x′) ⇔ r(x) > r(x′) for any x, x′ ∈
F , then Pr(x) = Pr(x′) ⇔ r(x) = r(x′), and thus
Pr(x1) = Pr(xi|x<i) ⇔ r(x1) = r(xi|x<i) for all
i = 2, . . . , n. This means, r(x1, . . . , xn) = nr(xi).
But g(Pr(x1, . . . , xn)) = r(x1, . . . , xn), and hence
g(Pr(x1)

n) = nr(x1). Similarly, for a second sequence
of events y1, y2, . . . , ym ∈ F with Pr(y1) = Pr(yi|y<i) >
0 for all i = 1, . . . , m, we have g(Pr(y1)

n) = nr(y1).



The rest of the argument parallels Shannon’s entropy
theorem [Shannon, 1948]. Define p = Pr(x1) and q =
Pr(y1). Choose n arbitrarily high to satisfy qm ≤ pn <
qm+1. Taking the logarithm, and dividing by n log q
one obtains

m

n
≤

log p

log q
<

m

n
+

1

n
⇔

∣

∣

∣

m

n
−

log p

log q

∣

∣

∣
< ε,

where ε > 0 is arbitrarily small. Similarly, using
g(pn) = n g(p) and the monotonicity of g, we can write
m g(q) ≤ n g(p) < (m + 1) g(q) and thus

m

n
≤

g(p)

g(q)
<

m

n
+

1

n
⇔

∣

∣

∣

m

n
−

g(p)

g(q)

∣

∣

∣
< ε,

where ε > 0 is arbitrarily small. Combining these two
inequalities, one gets

∣

∣

∣

log p

log q
−

g(p)

g(q)

∣

∣

∣
< 2ε,

which, fixing q, gives r(p) = g(p) = k log p, where k > 0.
This holds for any x1 ∈ F with Pr(x1) > 0.

Proof of Theorem 2

Proof. For all ω, ω′ ∈ Ω, d(ω) > d(ω′) ⇔ αd(ω) + β >
αd(ω′) + β ⇔ r({ω}) > r({ω′}) because the affine
transformation is positive. Now, the induced prob-
ability over P(Ω) has atoms {ω} with probabilities
Pr({ω}) = er({ω)} ≥ 0 and is normalized:

∑

ω∈Ω

er({ω}) =
∑

ω∈Ω

eαd({ω})+β =

∑

ω∈Ω eαd(ω)

∑

ω∈Ω eαd(ω)
= 1.

Since knowing Pr({ω}) for all ω ∈ Ω determines the
measure for the whole field P(Ω), (Ω, P(Ω),Pr) is a
probability space.

Proof of Proposition 2

Proof. (i) Since −∞ < r(xτ |x<τ ) ≤ 0 for all τ , then

−∞ < 1
t

∑t

τ=1 r(xτ |x<τ ) = U(x≤t) ≤ 0 for all t. (ii)
Write Pr(x≤t) as

Pr(x≤t) =

t
∏

τ=1

Pr(xτ |x<τ ) =

t
∏

τ=1

exp
(

r(xτ |x<τ )
)

= exp
(

t
∑

τ=1

r(xτ |x<τ )
)

= exp
(

t · U(x≤t)
)

.

(iii) E[U(x≤t)] =
∑

x≤t
Pr(x≤t)U(x≤t) =

∑

x≤t
Pr(x≤t)

1
t
r(x≤t) = − 1

t
H[Pr(x≤t)], where we have

applied (ii) in the second equality and r(·) = ln(Pr(·))
in the third equality.

Proof of Theorem 3

Proof. This proof is done by straightforward calcula-
tion. First note that

G(ao≤t) =

t
∏

τ=1

P(aτ |ao<τ )Q(oτ |ao<τaτ )

= P(a≤t|o<t)Q(o≤t|a≤t),

which is obtained by applying multiple times the chain
rule for probabilities and noting that the probability
of a symbol is fully determined by the previous sym-
bols. Similarly P(ao≤t) = P(a≤t|o<t)P(o≤t|a≤t) is ob-
tained. We calculate here E[rP(ao≤t)]. The calculation
for E[rG(ao≤t)] and E[rQ(ao≤t)] are omitted because
they are analogous.

E[rP(ao≤t
)]

(a)
=

∑

ao≤t

G(ao≤t
) lnP(ao≤t

)

(b)
=

∑

ao≤t

G(ao≤t
)
(

lnP(a≤t|o<t) + lnP(o≤t|a≤t)
)

(c)
=

∑

ao≤t

G(ao≤t
)
(

lnP(a≤t|o<t) + lnP(o≤t|a≤t)

+ lnQ(o≤t|a≤t) − lnQ(o≤t|a≤t)
)

(d)
= −H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

−KL[Q(o≤t|a≤t)‖P(o≤t|a≤t)].

Equality (a) follows from the definition of expecta-
tions and the relation between rewards and probabil-
ities. In (b) we separate the term in the logarithm into
the action and observation part. In (c) we add and
subtract the term Q(o≤t|a≤t) in the logarithm. Equal-
ity (d) follows from the algebraic manipulation of the
terms and from identifying the entropy terms, noting
that G(ao≤t) = P(a≤t|o<t)Q(o≤t|a≤t).
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